Port Redeemer PBR

This commit is contained in:
Totterynine
2021-10-10 19:41:28 +05:00
parent 3bdb0ea8f2
commit 25a1d290e3
10 changed files with 1902 additions and 1 deletions

View File

@@ -0,0 +1,84 @@
//===================== Copyright (c) Valve Corporation. All Rights Reserved. ======================
//
// Example shader that can be applied to models
//
//==================================================================================================
#include "BaseVSShader.h"
#include "convar.h"
#include "vertexlitpbr_dx9_helper.h"
#ifdef STDSHADER
BEGIN_VS_SHADER(VertexLitPBR,
"Help for VertexLitPBR")
#else
BEGIN_VS_SHADER(VertexLitPBR,
"Help for VertexLitPBR")
#endif
BEGIN_SHADER_PARAMS
SHADER_PARAM(ALPHATESTREFERENCE, SHADER_PARAM_TYPE_FLOAT, "0.0", "")
SHADER_PARAM(ENVMAP, SHADER_PARAM_TYPE_TEXTURE, "shadertest/shadertest_env", "envmap")
SHADER_PARAM(BUMPMAP, SHADER_PARAM_TYPE_TEXTURE, "models/shadertest/shader1_normal", "bump map")
SHADER_PARAM(BRDF, SHADER_PARAM_TYPE_TEXTURE, "models/PBRTest/BRDF", "")
SHADER_PARAM(NOISE, SHADER_PARAM_TYPE_TEXTURE, "shaders/bluenoise", "")
SHADER_PARAM(ROUGHNESS, SHADER_PARAM_TYPE_TEXTURE, "", "")
SHADER_PARAM(METALLIC, SHADER_PARAM_TYPE_TEXTURE, "", "")
SHADER_PARAM(AO, SHADER_PARAM_TYPE_TEXTURE, "", "")
SHADER_PARAM(EMISSIVE, SHADER_PARAM_TYPE_TEXTURE, "", "")
SHADER_PARAM(LIGHTMAP, SHADER_PARAM_TYPE_TEXTURE, "shadertest/BaseTexture", "lightmap texture--will be bound by the engine")
SHADER_PARAM(USESMOOTHNESS, SHADER_PARAM_TYPE_BOOL, "0", "Invert roughness")
END_SHADER_PARAMS
void SetupVars(VertexLitPBR_DX9_Vars_t& info)
{
info.m_nBaseTexture = BASETEXTURE;
info.m_nBaseTextureFrame = FRAME;
info.m_nBaseTextureTransform = BASETEXTURETRANSFORM;
info.m_nAlphaTestReference = ALPHATESTREFERENCE;
info.m_nRoughness = ROUGHNESS;
info.m_nMetallic = METALLIC;
info.m_nAO = AO;
info.m_nEmissive = EMISSIVE;
info.m_nEnvmap = ENVMAP;
info.m_nBumpmap = BUMPMAP;
info.m_nFlashlightTexture = FLASHLIGHTTEXTURE;
info.m_nFlashlightTextureFrame = FLASHLIGHTTEXTUREFRAME;
info.m_nBRDF = BRDF;
info.m_nUseSmoothness = USESMOOTHNESS;
info.m_nLightmap = LIGHTMAP;
}
SHADER_INIT_PARAMS()
{
VertexLitPBR_DX9_Vars_t info;
SetupVars(info);
InitParamsVertexLitPBR_DX9(this, params, pMaterialName, info);
}
SHADER_FALLBACK
{
return 0;
}
SHADER_INIT
{
VertexLitPBR_DX9_Vars_t info;
SetupVars(info);
InitVertexLitPBR_DX9(this, params, info);
}
SHADER_DRAW
{
bool hasFlashlight = UsingFlashlight(params);
VertexLitPBR_DX9_Vars_t info;
SetupVars(info);
DrawVertexLitPBR_DX9(this, params, pShaderAPI, pShaderShadow, hasFlashlight, info, vertexCompression, pContextDataPtr);
}
END_SHADER

View File

@@ -0,0 +1,477 @@
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#include "BaseVSShader.h"
#include "vertexlitPBR_dx9_helper.h"
#include "convar.h"
#include "cpp_shader_constant_register_map.h"
#include "vertexlitPBR_vs30.inc"
#include "vertexlitPBR_ps30.inc"
#include "commandbuilder.h"
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
static ConVar mat_fullbright( "mat_fullbright", "0", FCVAR_CHEAT );
static ConVar r_rimlight( "r_rimlight", "1", FCVAR_CHEAT );
//-----------------------------------------------------------------------------
// Initialize shader parameters
//-----------------------------------------------------------------------------
void InitParamsVertexLitPBR_DX9( CBaseVSShader *pShader, IMaterialVar** params, const char *pMaterialName, VertexLitPBR_DX9_Vars_t &info )
{
// FLASHLIGHTFIXME: Do ShaderAPI::BindFlashlightTexture
Assert( info.m_nFlashlightTexture >= 0 );
params[info.m_nBRDF]->SetStringValue("models/PBRTest/BRDF");
if ( g_pHardwareConfig->SupportsBorderColor() )
{
params[FLASHLIGHTTEXTURE]->SetStringValue( "effects/flashlight_border" );
}
else
{
params[FLASHLIGHTTEXTURE]->SetStringValue( "effects/flashlight001" );
}
if (((info.m_nBumpmap != -1) && g_pConfig->UseBumpmapping() && params[info.m_nBumpmap]->IsDefined())
// we don't need a tangent space if we have envmap without bumpmap
// || ( info.m_nEnvmap != -1 && params[info.m_nEnvmap]->IsDefined() )
)
{
SET_FLAGS2(MATERIAL_VAR2_NEEDS_TANGENT_SPACES);
}
// This shader can be used with hw skinning
SET_FLAGS2( MATERIAL_VAR2_SUPPORTS_HW_SKINNING );
SET_FLAGS2( MATERIAL_VAR2_LIGHTING_VERTEX_LIT );
}
//-----------------------------------------------------------------------------
// Initialize shader
//-----------------------------------------------------------------------------
void InitVertexLitPBR_DX9( CBaseVSShader *pShader, IMaterialVar** params, VertexLitPBR_DX9_Vars_t &info )
{
Assert( info.m_nFlashlightTexture >= 0 );
pShader->LoadTexture(info.m_nFlashlightTexture, TEXTUREFLAGS_SRGB);
bool bIsBaseTextureTranslucent = false;
if ( params[info.m_nBaseTexture]->IsDefined() )
{
pShader->LoadTexture( info.m_nBaseTexture, TEXTUREFLAGS_SRGB );
if ( params[info.m_nBaseTexture]->GetTextureValue()->IsTranslucent() )
{
bIsBaseTextureTranslucent = true;
}
}
if (info.m_nRoughness != -1 && params[info.m_nRoughness]->IsDefined())
{
pShader->LoadTexture(info.m_nRoughness);
}
if (info.m_nMetallic != -1 && params[info.m_nMetallic]->IsDefined())
{
pShader->LoadTexture(info.m_nMetallic);
}
if (info.m_nAO != -1 && params[info.m_nAO]->IsDefined())
{
pShader->LoadTexture(info.m_nAO);
}
if (info.m_nEmissive != -1 && params[info.m_nEmissive]->IsDefined())
{
pShader->LoadTexture(info.m_nEmissive);
}
if (info.m_nBRDF != -1 && params[info.m_nBRDF]->IsDefined())
{
pShader->LoadTexture(info.m_nBRDF);
}
if (info.m_nLightmap != -1 && params[info.m_nLightmap]->IsDefined())
{
pShader->LoadTexture(info.m_nLightmap);
}
if (info.m_nEnvmap != -1 && params[info.m_nEnvmap]->IsDefined())
{
if (!IS_FLAG_SET(MATERIAL_VAR_ENVMAPSPHERE))
{
int flags = g_pHardwareConfig->GetHDRType() == HDR_TYPE_NONE ? TEXTUREFLAGS_SRGB : 0;
flags |= TEXTUREFLAGS_ALL_MIPS;
pShader->LoadCubeMap(info.m_nEnvmap, flags);
}
else
{
pShader->LoadTexture(info.m_nEnvmap, g_pHardwareConfig->GetHDRType() == HDR_TYPE_NONE ? TEXTUREFLAGS_SRGB : 0);
}
if (!g_pHardwareConfig->SupportsCubeMaps())
{
SET_FLAGS(MATERIAL_VAR_ENVMAPSPHERE);
}
}
if (g_pConfig->UseBumpmapping())
{
if ((info.m_nBumpmap != -1) && params[info.m_nBumpmap]->IsDefined())
{
pShader->LoadBumpMap(info.m_nBumpmap);
SET_FLAGS2(MATERIAL_VAR2_DIFFUSE_BUMPMAPPED_MODEL);
}
}
}
class CVertexLitPBR_DX9_Context : public CBasePerMaterialContextData
{
public:
CCommandBufferBuilder< CFixedCommandStorageBuffer< 800 > > m_SemiStaticCmdsOut;
bool m_bFastPath;
};
//-----------------------------------------------------------------------------
// Draws the shader
//-----------------------------------------------------------------------------
static void DrawVertexLitPBR_DX9_Internal( CBaseVSShader *pShader, IMaterialVar** params, IShaderDynamicAPI *pShaderAPI, IShaderShadow* pShaderShadow,
bool bHasFlashlight, VertexLitPBR_DX9_Vars_t &info, VertexCompressionType_t vertexCompression,
CBasePerMaterialContextData **pContextDataPtr )
{
bool bHasBaseTexture = (info.m_nBaseTexture != -1) && params[info.m_nBaseTexture]->IsTexture();
bool bHasRoughness = (info.m_nRoughness != -1) && params[info.m_nRoughness]->IsTexture();
bool bHasMetallic = (info.m_nMetallic != -1) && params[info.m_nMetallic]->IsTexture();
bool bHasAO = (info.m_nAO != -1) && params[info.m_nAO]->IsTexture();
bool bHasEmissive = (info.m_nEmissive != -1) && params[info.m_nEmissive]->IsTexture();
bool bIsAlphaTested = IS_FLAG_SET( MATERIAL_VAR_ALPHATEST ) != 0;
bool bHasEnvmap =(info.m_nEnvmap != -1) && params[info.m_nEnvmap]->IsTexture();
bool bHasLegacyEnvSphereMap = bHasEnvmap && IS_FLAG_SET(MATERIAL_VAR_ENVMAPSPHERE);
bool bHasBump = IsTextureSet(info.m_nBumpmap, params);
bool bUseSmoothness = info.m_nUseSmoothness != -1 && params[info.m_nUseSmoothness]->GetIntValue() == 1;
bool bHasLightmap = (info.m_nLightmap != -1) && params[info.m_nLightmap]->IsTexture();
bool bHasVertexColor = IS_FLAG_SET(MATERIAL_VAR_VERTEXCOLOR);
bool bHasVertexAlpha = IS_FLAG_SET(MATERIAL_VAR_VERTEXALPHA);
BlendType_t nBlendType= pShader->EvaluateBlendRequirements( info.m_nBaseTexture, true );
bool bFullyOpaque = ( nBlendType != BT_BLENDADD ) && ( nBlendType != BT_BLEND ) && !bIsAlphaTested && !bHasFlashlight;
CVertexLitPBR_DX9_Context *pContextData = reinterpret_cast< CVertexLitPBR_DX9_Context *> ( *pContextDataPtr );
if ( !pContextData )
{
pContextData = new CVertexLitPBR_DX9_Context;
*pContextDataPtr = pContextData;
}
if( pShader->IsSnapshotting() )
{
pShaderShadow->EnableAlphaTest( bIsAlphaTested );
if( info.m_nAlphaTestReference != -1 && params[info.m_nAlphaTestReference]->GetFloatValue() > 0.0f )
{
pShaderShadow->AlphaFunc( SHADER_ALPHAFUNC_GEQUAL, params[info.m_nAlphaTestReference]->GetFloatValue() );
}
int nShadowFilterMode = 0;
if( bHasFlashlight )
{
if (params[info.m_nBaseTexture]->IsTexture())
{
pShader->SetAdditiveBlendingShadowState( info.m_nBaseTexture, true );
}
if( bIsAlphaTested )
{
// disable alpha test and use the zfunc zequals since alpha isn't guaranteed to
// be the same on both the regular pass and the flashlight pass.
pShaderShadow->EnableAlphaTest( false );
pShaderShadow->DepthFunc( SHADER_DEPTHFUNC_EQUAL );
}
pShaderShadow->EnableBlending( true );
pShaderShadow->EnableDepthWrites( false );
// Be sure not to write to dest alpha
pShaderShadow->EnableAlphaWrites( false );
nShadowFilterMode = g_pHardwareConfig->GetShadowFilterMode(); // Based upon vendor and device dependent formats
}
else // not flashlight pass
{
if (params[info.m_nBaseTexture]->IsTexture())
{
pShader->SetDefaultBlendingShadowState( info.m_nBaseTexture, true );
}
}
unsigned int flags = VERTEX_POSITION | VERTEX_NORMAL;
int userDataSize = 0;
// Always enable...will bind white if nothing specified...
pShaderShadow->EnableTexture( SHADER_SAMPLER0, true ); // Base (albedo) map
pShaderShadow->EnableSRGBRead( SHADER_SAMPLER0, true );
pShaderShadow->EnableTexture(SHADER_SAMPLER1, true); // Roughness map
pShaderShadow->EnableTexture(SHADER_SAMPLER2, true); // Metallic map
if (bHasEnvmap)
{
pShaderShadow->EnableTexture(SHADER_SAMPLER7, true);
if (g_pHardwareConfig->GetHDRType() == HDR_TYPE_NONE)
{
pShaderShadow->EnableSRGBRead(SHADER_SAMPLER7, true);
}
}
if (bHasVertexColor || bHasVertexAlpha)
{
flags |= VERTEX_COLOR;
}
pShaderShadow->EnableTexture( SHADER_SAMPLER4, true ); // Shadow depth map
pShaderShadow->SetShadowDepthFiltering( SHADER_SAMPLER4 );
pShaderShadow->EnableSRGBRead( SHADER_SAMPLER4, false );
if( bHasFlashlight )
{
pShaderShadow->EnableTexture( SHADER_SAMPLER5, true ); // Noise map
pShaderShadow->EnableTexture( SHADER_SAMPLER6, true ); // Flashlight cookie
pShaderShadow->EnableSRGBRead( SHADER_SAMPLER6, true );
}
pShaderShadow->EnableTexture(SHADER_SAMPLER8, true); // BRDF for IBL
pShaderShadow->EnableTexture(SHADER_SAMPLER9, true); // Ambient Occlusion
pShaderShadow->EnableTexture(SHADER_SAMPLER10, true); // Emissive map
pShaderShadow->EnableTexture(SHADER_SAMPLER11, true); // Lightmap
// Always enable, since flat normal will be bound
pShaderShadow->EnableTexture( SHADER_SAMPLER3, true ); // Normal map
userDataSize = 4; // tangent S
pShaderShadow->EnableTexture( SHADER_SAMPLER5, true ); // Normalizing cube map
pShaderShadow->EnableSRGBWrite( true );
// texcoord0 : base texcoord
int pTexCoordDim[3] = { 2, 2, 3 };
int nTexCoordCount = 1;
// This shader supports compressed vertices, so OR in that flag:
flags |= VERTEX_FORMAT_COMPRESSED;
pShaderShadow->VertexShaderVertexFormat( flags, nTexCoordCount, pTexCoordDim, userDataSize );
DECLARE_STATIC_VERTEX_SHADER(vertexlitpbr_vs30);
SET_STATIC_VERTEX_SHADER_COMBO(VERTEXCOLOR, bHasVertexColor || bHasVertexAlpha);
SET_STATIC_VERTEX_SHADER_COMBO(CUBEMAP, bHasEnvmap);
SET_STATIC_VERTEX_SHADER_COMBO(DONT_GAMMA_CONVERT_VERTEX_COLOR, bHasVertexColor);
SET_STATIC_VERTEX_SHADER(vertexlitpbr_vs30);
// Assume we're only going to get in here if we support 2b
DECLARE_STATIC_PIXEL_SHADER(vertexlitpbr_ps30);
SET_STATIC_PIXEL_SHADER_COMBO( CUBEMAP, bHasEnvmap && !bHasFlashlight);
SET_STATIC_PIXEL_SHADER_COMBO( CUBEMAP_SPHERE_LEGACY, bHasLegacyEnvSphereMap);
SET_STATIC_PIXEL_SHADER_COMBO( FLASHLIGHT, bHasFlashlight ? 1 : 0 );
SET_STATIC_PIXEL_SHADER_COMBO( CONVERT_TO_SRGB, 0 );
SET_STATIC_PIXEL_SHADER_COMBO(SMOOTHNESS, bUseSmoothness ? 1 : 0);
SET_STATIC_PIXEL_SHADER(vertexlitpbr_ps30);
if( bHasFlashlight )
{
pShader->FogToBlack();
}
else
{
pShader->DefaultFog();
}
// HACK HACK HACK - enable alpha writes all the time so that we have them for underwater stuff
pShaderShadow->EnableAlphaWrites( bFullyOpaque );
}
else // not snapshotting -- begin dynamic state
{
bool bLightingOnly = mat_fullbright.GetInt() == 2 && !IS_FLAG_SET( MATERIAL_VAR_NO_DEBUG_OVERRIDE );
if( bHasBaseTexture )
pShader->BindTexture( SHADER_SAMPLER0, info.m_nBaseTexture, info.m_nBaseTextureFrame );
else
pShaderAPI->BindStandardTexture( SHADER_SAMPLER0, TEXTURE_WHITE );
if (bHasRoughness)
pShader->BindTexture(SHADER_SAMPLER1, info.m_nRoughness);
else
pShaderAPI->BindStandardTexture(SHADER_SAMPLER1, TEXTURE_WHITE);
if (bHasMetallic)
pShader->BindTexture(SHADER_SAMPLER2, info.m_nMetallic);
else
pShaderAPI->BindStandardTexture(SHADER_SAMPLER2, TEXTURE_BLACK);
if (bHasEnvmap)
pShader->BindTexture(SHADER_SAMPLER7, info.m_nEnvmap);
if (bHasAO)
pShader->BindTexture(SHADER_SAMPLER9, info.m_nAO);
else
pShaderAPI->BindStandardTexture(SHADER_SAMPLER9, TEXTURE_WHITE);
if (bHasEmissive)
pShader->BindTexture(SHADER_SAMPLER10, info.m_nEmissive);
else
pShaderAPI->BindStandardTexture(SHADER_SAMPLER10, TEXTURE_BLACK);
if (bHasLightmap)
pShader->BindTexture(SHADER_SAMPLER11, info.m_nLightmap);
else
pShaderAPI->BindStandardTexture(SHADER_SAMPLER11, TEXTURE_WHITE);
if (!g_pConfig->m_bFastNoBump)
{
if (bHasBump)
{
pShader->BindTexture(SHADER_SAMPLER3, info.m_nBumpmap);
}
else
{
pShaderAPI->BindStandardTexture(SHADER_SAMPLER3, TEXTURE_NORMALMAP_FLAT);
}
}
else
{
if (bHasBump)
{
pShaderAPI->BindStandardTexture(SHADER_SAMPLER3, TEXTURE_NORMALMAP_FLAT);
}
}
pShader->BindTexture(SHADER_SAMPLER8, info.m_nBRDF);
LightState_t lightState = { 0, false, false };
bool bFlashlightShadows = false;
if( bHasFlashlight )
{
Assert( info.m_nFlashlightTexture >= 0 && info.m_nFlashlightTextureFrame >= 0 );
pShader->BindTexture( SHADER_SAMPLER6, info.m_nFlashlightTexture, info.m_nFlashlightTextureFrame );
VMatrix worldToTexture;
ITexture *pFlashlightDepthTexture;
FlashlightState_t state = pShaderAPI->GetFlashlightStateEx( worldToTexture, &pFlashlightDepthTexture );
bFlashlightShadows = state.m_bEnableShadows && ( pFlashlightDepthTexture != NULL );
SetFlashLightColorFromState( state, pShaderAPI, PSREG_FLASHLIGHT_COLOR );
if( pFlashlightDepthTexture && g_pConfig->ShadowDepthTexture() && state.m_bEnableShadows )
{
pShader->BindTexture( SHADER_SAMPLER4, pFlashlightDepthTexture, 0 );
pShaderAPI->BindStandardTexture( SHADER_SAMPLER5, TEXTURE_SHADOW_NOISE_2D );
}
}
else // no flashlight
{
pShaderAPI->GetDX9LightState( &lightState );
}
MaterialFogMode_t fogType = pShaderAPI->GetSceneFogMode();
int fogIndex = ( fogType == MATERIAL_FOG_LINEAR_BELOW_FOG_Z ) ? 1 : 0;
int numBones = pShaderAPI->GetCurrentNumBones();
bool bWriteDepthToAlpha = false;
bool bWriteWaterFogToAlpha = false;
if( bFullyOpaque )
{
bWriteDepthToAlpha = pShaderAPI->ShouldWriteDepthToDestAlpha();
bWriteWaterFogToAlpha = (fogType == MATERIAL_FOG_LINEAR_BELOW_FOG_Z);
AssertMsg( !(bWriteDepthToAlpha && bWriteWaterFogToAlpha), "Can't write two values to alpha at the same time." );
}
DECLARE_DYNAMIC_VERTEX_SHADER(vertexlitpbr_vs30);
SET_DYNAMIC_VERTEX_SHADER_COMBO( DOWATERFOG, fogIndex );
SET_DYNAMIC_VERTEX_SHADER_COMBO( SKINNING, numBones > 0 );
SET_DYNAMIC_VERTEX_SHADER_COMBO( LIGHTING_PREVIEW, pShaderAPI->GetIntRenderingParameter(INT_RENDERPARM_ENABLE_FIXED_LIGHTING)!=0);
SET_DYNAMIC_VERTEX_SHADER_COMBO( COMPRESSED_VERTS, (int)vertexCompression );
SET_DYNAMIC_VERTEX_SHADER_COMBO( NUM_LIGHTS, lightState.m_nNumLights );
SET_DYNAMIC_VERTEX_SHADER_COMBO(DYNAMIC_LIGHT, lightState.HasDynamicLight());
SET_DYNAMIC_VERTEX_SHADER_COMBO(STATIC_LIGHT, lightState.m_bStaticLightVertex ? 1 : 0);
SET_DYNAMIC_VERTEX_SHADER(vertexlitpbr_vs30);
DECLARE_DYNAMIC_PIXEL_SHADER(vertexlitpbr_ps30);
SET_DYNAMIC_PIXEL_SHADER_COMBO( NUM_LIGHTS, lightState.m_nNumLights );
SET_DYNAMIC_PIXEL_SHADER_COMBO( WRITEWATERFOGTODESTALPHA, bWriteWaterFogToAlpha );
SET_DYNAMIC_PIXEL_SHADER_COMBO( WRITE_DEPTH_TO_DESTALPHA, bWriteDepthToAlpha );
SET_DYNAMIC_PIXEL_SHADER_COMBO( PIXELFOGTYPE, pShaderAPI->GetPixelFogCombo() );
SET_DYNAMIC_PIXEL_SHADER_COMBO( FLASHLIGHTSHADOWS, bFlashlightShadows );
SET_DYNAMIC_PIXEL_SHADER_COMBO( LIGHTMAP, bHasLightmap);
SET_DYNAMIC_PIXEL_SHADER_COMBO(LIGHT_PREVIEW,
pShaderAPI->GetIntRenderingParameter(INT_RENDERPARM_ENABLE_FIXED_LIGHTING));
SET_DYNAMIC_PIXEL_SHADER(vertexlitpbr_ps30);
pShader->SetVertexShaderTextureTransform( VERTEX_SHADER_SHADER_SPECIFIC_CONST_0, info.m_nBaseTextureTransform );
pShader->SetModulationPixelShaderDynamicState_LinearColorSpace( 1 );
pShader->SetAmbientCubeDynamicStateVertexShader();
// handle mat_fullbright 2 (diffuse lighting only)
if( bLightingOnly )
{
pShaderAPI->BindStandardTexture( SHADER_SAMPLER0, TEXTURE_GREY );
}
pShaderAPI->SetPixelShaderFogParams( PSREG_FOG_PARAMS );
if (!bHasFlashlight)
{
pShaderAPI->BindStandardTexture(SHADER_SAMPLER5, TEXTURE_NORMALIZATION_CUBEMAP_SIGNED);
pShaderAPI->CommitPixelShaderLighting(PSREG_LIGHT_INFO_ARRAY);
pShaderAPI->SetPixelShaderStateAmbientLightCube(PSREG_AMBIENT_CUBE); // Force to black if not bAmbientLight
}
float vEyePos_SpecExponent[4];
pShaderAPI->GetWorldSpaceCameraPosition(vEyePos_SpecExponent);
vEyePos_SpecExponent[3] = 0.0f;
pShaderAPI->SetPixelShaderConstant(PSREG_EYEPOS_SPEC_EXPONENT, vEyePos_SpecExponent, 1);
if( bHasFlashlight )
{
VMatrix worldToTexture;
float atten[4], pos[4], tweaks[4];
const FlashlightState_t &flashlightState = pShaderAPI->GetFlashlightState( worldToTexture );
float const* pFlashlightColor = flashlightState.m_Color;
float vPsConst[4] = { pFlashlightColor[0], pFlashlightColor[1], pFlashlightColor[2], 4.5f };
pShaderAPI->SetPixelShaderConstant(PSREG_FLASHLIGHT_COLOR, vPsConst, 1);
pShader->BindTexture( SHADER_SAMPLER6, flashlightState.m_pSpotlightTexture, flashlightState.m_nSpotlightTextureFrame );
atten[0] = flashlightState.m_fConstantAtten; // Set the flashlight attenuation factors
atten[1] = flashlightState.m_fLinearAtten;
atten[2] = flashlightState.m_fQuadraticAtten;
atten[3] = flashlightState.m_FarZ;
pShaderAPI->SetPixelShaderConstant( PSREG_FLASHLIGHT_ATTENUATION, atten, 1 );
pos[0] = flashlightState.m_vecLightOrigin[0]; // Set the flashlight origin
pos[1] = flashlightState.m_vecLightOrigin[1];
pos[2] = flashlightState.m_vecLightOrigin[2];
pShaderAPI->SetPixelShaderConstant( PSREG_FLASHLIGHT_POSITION_RIM_BOOST, pos, 1 );
pShaderAPI->SetPixelShaderConstant( PSREG_FLASHLIGHT_TO_WORLD_TEXTURE, worldToTexture.Base(), 4 );
// Tweaks associated with a given flashlight
tweaks[0] = ShadowFilterFromState( flashlightState );
tweaks[1] = ShadowAttenFromState( flashlightState );
pShader->HashShadow2DJitter( flashlightState.m_flShadowJitterSeed, &tweaks[2], &tweaks[3] );
pShaderAPI->SetPixelShaderConstant( PSREG_ENVMAP_TINT__SHADOW_TWEAKS, tweaks, 1 );
}
}
pShader->Draw();
}
//-----------------------------------------------------------------------------
// Draws the shader
//-----------------------------------------------------------------------------
void DrawVertexLitPBR_DX9( CBaseVSShader *pShader, IMaterialVar** params, IShaderDynamicAPI *pShaderAPI, IShaderShadow* pShaderShadow, bool bHasFlashlight,
VertexLitPBR_DX9_Vars_t &info, VertexCompressionType_t vertexCompression, CBasePerMaterialContextData **pContextDataPtr )
{
DrawVertexLitPBR_DX9_Internal( pShader, params, pShaderAPI, pShaderShadow, bHasFlashlight, info, vertexCompression, pContextDataPtr );
}

View File

@@ -0,0 +1,55 @@
//===================== Copyright (c) Valve Corporation. All Rights Reserved. ======================
//
// Example shader that can be applied to models
//
//==================================================================================================
#ifndef EXAMPLE_MODEL_DX9_HELPER_H
#define EXAMPLE_MODEL_DX9_HELPER_H
#include <string.h>
//-----------------------------------------------------------------------------
// Forward declarations
//-----------------------------------------------------------------------------
class CBaseVSShader;
class IMaterialVar;
class IShaderDynamicAPI;
class IShaderShadow;
//-----------------------------------------------------------------------------
// Init params/ init/ draw methods
//-----------------------------------------------------------------------------
struct VertexLitPBR_DX9_Vars_t
{
VertexLitPBR_DX9_Vars_t() { memset( this, 0xFF, sizeof(*this) ); }
int m_nBaseTexture;
int m_nBaseTextureFrame;
int m_nBaseTextureTransform;
int m_nAlphaTestReference;
int m_nRoughness;
int m_nMetallic;
int m_nAO;
int m_nEmissive;
int m_nEnvmap;
int m_nBumpmap;
int m_nFlashlightTexture;
int m_nFlashlightTextureFrame;
int m_nBRDF;
int m_nUseSmoothness;
int m_nLightmap;
};
void InitParamsVertexLitPBR_DX9( CBaseVSShader *pShader, IMaterialVar** params,
const char *pMaterialName, VertexLitPBR_DX9_Vars_t &info );
void InitVertexLitPBR_DX9( CBaseVSShader *pShader, IMaterialVar** params,
VertexLitPBR_DX9_Vars_t &info );
void DrawVertexLitPBR_DX9( CBaseVSShader *pShader, IMaterialVar** params, IShaderDynamicAPI *pShaderAPI,
IShaderShadow* pShaderShadow, bool bHasFlashlight,
VertexLitPBR_DX9_Vars_t &info, VertexCompressionType_t vertexCompression,
CBasePerMaterialContextData **pContextDataPtr );
#endif // EXAMPLE_MODEL_DX9_HELPER_H

View File

@@ -0,0 +1,176 @@
#define PI 3.1415926
float luminance(float3 rgb)
{
const float3 W = float3(0.5125, 0.7154, 0.7121);
return dot(rgb, W);
}
float GeometrySchlickGGX(float NdotV, float roughness)
{
float num = NdotV;
float denom = NdotV * (1.0 - roughness) + roughness;
return num / denom;
}
float GeometrySmith(float3 N, float3 V, float3 L, float roughness)
{
float r = roughness + 1.0f;
r = (r * r) / 8.0f;
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, r);
float ggx1 = GeometrySchlickGGX(NdotL, r);
return ggx1 * ggx2;
}
float DistributionBlinnPhong(float3 N, float3 H, float roughness)
{
float alphaprime = roughness * roughness;
float a = alphaprime * alphaprime;
return (1.0f / (a * PI)) * pow(dot(N, H), 2 / a - 2);
}
float DistributionGGX(float3 N, float3 H, float distL, float roughness)
{
float alphaPrime = saturate(16.0f / (distL * 2.0) + roughness);
float a = roughness * alphaPrime;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float num = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return num / denom;
}
float DistributionTrowbridgeReitz(float HN, float roughness, float aP)
{
float a2 = roughness * roughness;
float ap2 = aP * aP;
return (a2 * ap2) / pow(HN * HN * (a2 - 1.0) + 1.0, 2.0);
}
float3 fresnelSchlick(float cosTheta, float3 F0)
{
return F0 + (1.0f.xxx - F0) * pow(1.0f - cosTheta, 5.0);
}
float3 Diffuse_OrenNayar(float3 DiffuseColor, float Roughness, float NoV, float NoL, float VoH)
{
float a = Roughness * Roughness;
float s = a;// / ( 1.29 + 0.5 * a );
float s2 = s * s;
float VoL = 2 * VoH * VoH - 1; // double angle identity
float Cosri = VoL - NoV * NoL;
float C1 = 1 - 0.5 * s2 / (s2 + 0.33);
float C2 = 0.45 * s2 / (s2 + 0.09) * Cosri * (Cosri >= 0 ? 1 / (max(NoL, NoV)) : 1);
return DiffuseColor / PI * (C1 + C2) * (1 + Roughness * 0.5);
}
float3 DoPBRLight(float3 vWorldPos, float3 vWorldNormal, float3 albedo, float3 vPosition, float3 vColor, float3 vEye, float atten_radius, float3 metallness, float3 rough)
{
float3 Li = (vPosition - vWorldPos );
//float3 L = normalize(vPosition - vWorldPos);
float3 V = normalize( vEye - vWorldPos );
float3 N = normalize( vWorldNormal );
float3 r = reflect(-V, N);
float3 L = Li;
float3 centerToRay = (dot(L, r) * r) - L;
float3 closestPoint = L + centerToRay * saturate(4.0f / length(centerToRay));
L = normalize(closestPoint);
float3 metallic = clamp(metallness, 0.0f, 0.9f);
float3 roughness = clamp(rough, 0.015f, 1.0f);
float distance = length(closestPoint);
float attenuation = atten_radius;
float3 radiance = vColor * attenuation;
float3 H = normalize(V + L);
if(luminance(radiance) < 0.01f)
{
return 0.0f;
}
float HV = max(0.0, dot(H, V));
float HL = max(0.0, dot(H, L));
float HN = max(0.0, dot(H, N));
float LN = max(0.0, dot(L, N));
float NV = max(0.0, dot(N, V));
float3 F0 = 0.04f.xxx;
F0 = lerp(F0, albedo, metallic);
float3 F = fresnelSchlick(HL, F0);
float3 F2 = fresnelSchlick(HV, F0);
//float3 F = Diffuse_OrenNayar(F0, roughness, NV, LN, HV);
// D - Calculate normal distribution for specular BRDF.
//float D = DistributionGGX(N, H, length(Li), roughness);
float D = DistributionBlinnPhong(N, H, roughness);
//float alpha = roughness * roughness;
//float alphaPrime = clamp(lightRadius / (lenL * 2.0) + alpha, 0.0, 1.0);
//float D = DistributionTrowbridgeReitz(HN, alpha, alphaPrime);
// Calculate geometric attenuation for specular BRDF.
float G = GeometrySmith(N, V, L, roughness);
// Diffuse scattering happens due to light being refracted multiple times by a dielectric medium.
// Metals on the other hand either reflect or absorb energy so diffuse contribution is always, zero.
// To be energy conserving we must scale diffuse BRDF contribution based on Fresnel factor & metalness.
//float3 kd = lerp((1.0f.xxx - F), 0.0f.xxx, metallic.x);
float3 kd = (1.0f.xxx - F) * (1.0f.xxx - F2) * (1.0f.xxx - metallic);
float3 diffuseBRDF = (kd * albedo.rgb) / PI;
// Cook-Torrance specular microfacet BRDF.
float3 specularBRDF = (F * D * G) / max(0.001, 4.0 * LN * NV);
return (diffuseBRDF + specularBRDF) * LN * radiance;
}
float random (float2 uv) {
return frac(sin(dot(uv.xy,
float2(12.9898,78.233)))*
43758.5453123);
}
float3 SampleAmbientReflection(float3 normal, in float3 Ambient, in float3 Ground)
{
float NU = max(0.0, dot(normal, float3(0.0f, 0.0f, 1.0f)) * 0.5f +0.5f);
float reflectionTransition = step(NU, 0.5f);
float3 reflection = lerp(Ground, Ambient, reflectionTransition);
return reflection;
}
float3 DoAmbient(float2 UV, float3 vWorldPos, float3 vWorldNormal, float3 vEye, in float roughness, in float3 albedo, in float3 Ambient, in float3 Ground)
{
float3 V = normalize( vEye - vWorldPos );
float NV = max(0.0, dot(vWorldNormal, V) * 0.5f +0.5f);
float NU = max(0.0, dot(vWorldNormal, float3(0.0f, 0.0f, 1.0f)) * 0.5f +0.5f);
float diffuseTransition = NU;
float3 diffuse = lerp(Ground, Ambient, diffuseTransition);
HALF3 reflectVect = 2.0 * NV * vWorldNormal - V;
float3 reflection = 0.0f.xxx;
for (unsigned int isample = 0; isample < 32; isample++)
{
float3 randomvec = float3(random(UV + isample), random(UV + isample + 1), random(UV + isample + 2));
randomvec = randomvec * 2.0f - 1.0f;
reflection += SampleAmbientReflection(float4((reflectVect + (randomvec * roughness * roughness * 1.75f)), roughness * 4.0), Ground, Ambient).rgb / 32.0f;
}
return albedo.rgb * lerp(reflection, diffuse, roughness);
}

View File

@@ -0,0 +1,337 @@
#include "shaderlib/cshader.h"
class vertexlitpbr_ps30_Static_Index
{
private:
int m_nCONVERT_TO_SRGB;
#ifdef _DEBUG
bool m_bCONVERT_TO_SRGB;
#endif
public:
void SetCONVERT_TO_SRGB( int i )
{
Assert( i >= 0 && i <= 0 );
m_nCONVERT_TO_SRGB = i;
#ifdef _DEBUG
m_bCONVERT_TO_SRGB = true;
#endif
}
void SetCONVERT_TO_SRGB( bool i )
{
m_nCONVERT_TO_SRGB = i ? 1 : 0;
#ifdef _DEBUG
m_bCONVERT_TO_SRGB = true;
#endif
}
private:
int m_nFLASHLIGHT;
#ifdef _DEBUG
bool m_bFLASHLIGHT;
#endif
public:
void SetFLASHLIGHT( int i )
{
Assert( i >= 0 && i <= 1 );
m_nFLASHLIGHT = i;
#ifdef _DEBUG
m_bFLASHLIGHT = true;
#endif
}
void SetFLASHLIGHT( bool i )
{
m_nFLASHLIGHT = i ? 1 : 0;
#ifdef _DEBUG
m_bFLASHLIGHT = true;
#endif
}
private:
int m_nCUBEMAP;
#ifdef _DEBUG
bool m_bCUBEMAP;
#endif
public:
void SetCUBEMAP( int i )
{
Assert( i >= 0 && i <= 1 );
m_nCUBEMAP = i;
#ifdef _DEBUG
m_bCUBEMAP = true;
#endif
}
void SetCUBEMAP( bool i )
{
m_nCUBEMAP = i ? 1 : 0;
#ifdef _DEBUG
m_bCUBEMAP = true;
#endif
}
private:
int m_nCUBEMAP_SPHERE_LEGACY;
#ifdef _DEBUG
bool m_bCUBEMAP_SPHERE_LEGACY;
#endif
public:
void SetCUBEMAP_SPHERE_LEGACY( int i )
{
Assert( i >= 0 && i <= 1 );
m_nCUBEMAP_SPHERE_LEGACY = i;
#ifdef _DEBUG
m_bCUBEMAP_SPHERE_LEGACY = true;
#endif
}
void SetCUBEMAP_SPHERE_LEGACY( bool i )
{
m_nCUBEMAP_SPHERE_LEGACY = i ? 1 : 0;
#ifdef _DEBUG
m_bCUBEMAP_SPHERE_LEGACY = true;
#endif
}
private:
int m_nSMOOTHNESS;
#ifdef _DEBUG
bool m_bSMOOTHNESS;
#endif
public:
void SetSMOOTHNESS( int i )
{
Assert( i >= 0 && i <= 1 );
m_nSMOOTHNESS = i;
#ifdef _DEBUG
m_bSMOOTHNESS = true;
#endif
}
void SetSMOOTHNESS( bool i )
{
m_nSMOOTHNESS = i ? 1 : 0;
#ifdef _DEBUG
m_bSMOOTHNESS = true;
#endif
}
public:
vertexlitpbr_ps30_Static_Index( )
{
#ifdef _DEBUG
m_bCONVERT_TO_SRGB = false;
#endif // _DEBUG
m_nCONVERT_TO_SRGB = 0;
#ifdef _DEBUG
m_bFLASHLIGHT = false;
#endif // _DEBUG
m_nFLASHLIGHT = 0;
#ifdef _DEBUG
m_bCUBEMAP = false;
#endif // _DEBUG
m_nCUBEMAP = 0;
#ifdef _DEBUG
m_bCUBEMAP_SPHERE_LEGACY = false;
#endif // _DEBUG
m_nCUBEMAP_SPHERE_LEGACY = 0;
#ifdef _DEBUG
m_bSMOOTHNESS = false;
#endif // _DEBUG
m_nSMOOTHNESS = 0;
}
int GetIndex()
{
// Asserts to make sure that we aren't using any skipped combinations.
// Asserts to make sure that we are setting all of the combination vars.
#ifdef _DEBUG
bool bAllStaticVarsDefined = m_bCONVERT_TO_SRGB && m_bFLASHLIGHT && m_bCUBEMAP && m_bCUBEMAP_SPHERE_LEGACY && m_bSMOOTHNESS;
Assert( bAllStaticVarsDefined );
#endif // _DEBUG
return ( 480 * m_nCONVERT_TO_SRGB ) + ( 480 * m_nFLASHLIGHT ) + ( 960 * m_nCUBEMAP ) + ( 1920 * m_nCUBEMAP_SPHERE_LEGACY ) + ( 3840 * m_nSMOOTHNESS ) + 0;
}
};
#define shaderStaticTest_vertexlitpbr_ps30 psh_forgot_to_set_static_CONVERT_TO_SRGB + psh_forgot_to_set_static_FLASHLIGHT + psh_forgot_to_set_static_CUBEMAP + psh_forgot_to_set_static_CUBEMAP_SPHERE_LEGACY + psh_forgot_to_set_static_SMOOTHNESS + 0
class vertexlitpbr_ps30_Dynamic_Index
{
private:
int m_nWRITEWATERFOGTODESTALPHA;
#ifdef _DEBUG
bool m_bWRITEWATERFOGTODESTALPHA;
#endif
public:
void SetWRITEWATERFOGTODESTALPHA( int i )
{
Assert( i >= 0 && i <= 1 );
m_nWRITEWATERFOGTODESTALPHA = i;
#ifdef _DEBUG
m_bWRITEWATERFOGTODESTALPHA = true;
#endif
}
void SetWRITEWATERFOGTODESTALPHA( bool i )
{
m_nWRITEWATERFOGTODESTALPHA = i ? 1 : 0;
#ifdef _DEBUG
m_bWRITEWATERFOGTODESTALPHA = true;
#endif
}
private:
int m_nPIXELFOGTYPE;
#ifdef _DEBUG
bool m_bPIXELFOGTYPE;
#endif
public:
void SetPIXELFOGTYPE( int i )
{
Assert( i >= 0 && i <= 1 );
m_nPIXELFOGTYPE = i;
#ifdef _DEBUG
m_bPIXELFOGTYPE = true;
#endif
}
void SetPIXELFOGTYPE( bool i )
{
m_nPIXELFOGTYPE = i ? 1 : 0;
#ifdef _DEBUG
m_bPIXELFOGTYPE = true;
#endif
}
private:
int m_nNUM_LIGHTS;
#ifdef _DEBUG
bool m_bNUM_LIGHTS;
#endif
public:
void SetNUM_LIGHTS( int i )
{
Assert( i >= 0 && i <= 4 );
m_nNUM_LIGHTS = i;
#ifdef _DEBUG
m_bNUM_LIGHTS = true;
#endif
}
void SetNUM_LIGHTS( bool i )
{
m_nNUM_LIGHTS = i ? 1 : 0;
#ifdef _DEBUG
m_bNUM_LIGHTS = true;
#endif
}
private:
int m_nWRITE_DEPTH_TO_DESTALPHA;
#ifdef _DEBUG
bool m_bWRITE_DEPTH_TO_DESTALPHA;
#endif
public:
void SetWRITE_DEPTH_TO_DESTALPHA( int i )
{
Assert( i >= 0 && i <= 1 );
m_nWRITE_DEPTH_TO_DESTALPHA = i;
#ifdef _DEBUG
m_bWRITE_DEPTH_TO_DESTALPHA = true;
#endif
}
void SetWRITE_DEPTH_TO_DESTALPHA( bool i )
{
m_nWRITE_DEPTH_TO_DESTALPHA = i ? 1 : 0;
#ifdef _DEBUG
m_bWRITE_DEPTH_TO_DESTALPHA = true;
#endif
}
private:
int m_nFLASHLIGHTSHADOWS;
#ifdef _DEBUG
bool m_bFLASHLIGHTSHADOWS;
#endif
public:
void SetFLASHLIGHTSHADOWS( int i )
{
Assert( i >= 0 && i <= 1 );
m_nFLASHLIGHTSHADOWS = i;
#ifdef _DEBUG
m_bFLASHLIGHTSHADOWS = true;
#endif
}
void SetFLASHLIGHTSHADOWS( bool i )
{
m_nFLASHLIGHTSHADOWS = i ? 1 : 0;
#ifdef _DEBUG
m_bFLASHLIGHTSHADOWS = true;
#endif
}
private:
int m_nLIGHTMAP;
#ifdef _DEBUG
bool m_bLIGHTMAP;
#endif
public:
void SetLIGHTMAP( int i )
{
Assert( i >= 0 && i <= 1 );
m_nLIGHTMAP = i;
#ifdef _DEBUG
m_bLIGHTMAP = true;
#endif
}
void SetLIGHTMAP( bool i )
{
m_nLIGHTMAP = i ? 1 : 0;
#ifdef _DEBUG
m_bLIGHTMAP = true;
#endif
}
private:
int m_nLIGHT_PREVIEW;
#ifdef _DEBUG
bool m_bLIGHT_PREVIEW;
#endif
public:
void SetLIGHT_PREVIEW( int i )
{
Assert( i >= 0 && i <= 2 );
m_nLIGHT_PREVIEW = i;
#ifdef _DEBUG
m_bLIGHT_PREVIEW = true;
#endif
}
void SetLIGHT_PREVIEW( bool i )
{
m_nLIGHT_PREVIEW = i ? 1 : 0;
#ifdef _DEBUG
m_bLIGHT_PREVIEW = true;
#endif
}
public:
vertexlitpbr_ps30_Dynamic_Index()
{
#ifdef _DEBUG
m_bWRITEWATERFOGTODESTALPHA = false;
#endif // _DEBUG
m_nWRITEWATERFOGTODESTALPHA = 0;
#ifdef _DEBUG
m_bPIXELFOGTYPE = false;
#endif // _DEBUG
m_nPIXELFOGTYPE = 0;
#ifdef _DEBUG
m_bNUM_LIGHTS = false;
#endif // _DEBUG
m_nNUM_LIGHTS = 0;
#ifdef _DEBUG
m_bWRITE_DEPTH_TO_DESTALPHA = false;
#endif // _DEBUG
m_nWRITE_DEPTH_TO_DESTALPHA = 0;
#ifdef _DEBUG
m_bFLASHLIGHTSHADOWS = false;
#endif // _DEBUG
m_nFLASHLIGHTSHADOWS = 0;
#ifdef _DEBUG
m_bLIGHTMAP = false;
#endif // _DEBUG
m_nLIGHTMAP = 0;
#ifdef _DEBUG
m_bLIGHT_PREVIEW = false;
#endif // _DEBUG
m_nLIGHT_PREVIEW = 0;
}
int GetIndex()
{
// Asserts to make sure that we aren't using any skipped combinations.
// Asserts to make sure that we are setting all of the combination vars.
#ifdef _DEBUG
bool bAllDynamicVarsDefined = m_bWRITEWATERFOGTODESTALPHA && m_bPIXELFOGTYPE && m_bNUM_LIGHTS && m_bWRITE_DEPTH_TO_DESTALPHA && m_bFLASHLIGHTSHADOWS && m_bLIGHTMAP && m_bLIGHT_PREVIEW;
Assert( bAllDynamicVarsDefined );
#endif // _DEBUG
return ( 1 * m_nWRITEWATERFOGTODESTALPHA ) + ( 2 * m_nPIXELFOGTYPE ) + ( 4 * m_nNUM_LIGHTS ) + ( 20 * m_nWRITE_DEPTH_TO_DESTALPHA ) + ( 40 * m_nFLASHLIGHTSHADOWS ) + ( 80 * m_nLIGHTMAP ) + ( 160 * m_nLIGHT_PREVIEW ) + 0;
}
};
#define shaderDynamicTest_vertexlitpbr_ps30 psh_forgot_to_set_dynamic_WRITEWATERFOGTODESTALPHA + psh_forgot_to_set_dynamic_PIXELFOGTYPE + psh_forgot_to_set_dynamic_NUM_LIGHTS + psh_forgot_to_set_dynamic_WRITE_DEPTH_TO_DESTALPHA + psh_forgot_to_set_dynamic_FLASHLIGHTSHADOWS + psh_forgot_to_set_dynamic_LIGHTMAP + psh_forgot_to_set_dynamic_LIGHT_PREVIEW + 0

View File

@@ -0,0 +1,287 @@
#include "shaderlib/cshader.h"
class vertexlitpbr_vs30_Static_Index
{
private:
int m_nVERTEXCOLOR;
#ifdef _DEBUG
bool m_bVERTEXCOLOR;
#endif
public:
void SetVERTEXCOLOR( int i )
{
Assert( i >= 0 && i <= 1 );
m_nVERTEXCOLOR = i;
#ifdef _DEBUG
m_bVERTEXCOLOR = true;
#endif
}
void SetVERTEXCOLOR( bool i )
{
m_nVERTEXCOLOR = i ? 1 : 0;
#ifdef _DEBUG
m_bVERTEXCOLOR = true;
#endif
}
private:
int m_nCUBEMAP;
#ifdef _DEBUG
bool m_bCUBEMAP;
#endif
public:
void SetCUBEMAP( int i )
{
Assert( i >= 0 && i <= 1 );
m_nCUBEMAP = i;
#ifdef _DEBUG
m_bCUBEMAP = true;
#endif
}
void SetCUBEMAP( bool i )
{
m_nCUBEMAP = i ? 1 : 0;
#ifdef _DEBUG
m_bCUBEMAP = true;
#endif
}
private:
int m_nDONT_GAMMA_CONVERT_VERTEX_COLOR;
#ifdef _DEBUG
bool m_bDONT_GAMMA_CONVERT_VERTEX_COLOR;
#endif
public:
void SetDONT_GAMMA_CONVERT_VERTEX_COLOR( int i )
{
Assert( i >= 0 && i <= 1 );
m_nDONT_GAMMA_CONVERT_VERTEX_COLOR = i;
#ifdef _DEBUG
m_bDONT_GAMMA_CONVERT_VERTEX_COLOR = true;
#endif
}
void SetDONT_GAMMA_CONVERT_VERTEX_COLOR( bool i )
{
m_nDONT_GAMMA_CONVERT_VERTEX_COLOR = i ? 1 : 0;
#ifdef _DEBUG
m_bDONT_GAMMA_CONVERT_VERTEX_COLOR = true;
#endif
}
public:
vertexlitpbr_vs30_Static_Index( )
{
#ifdef _DEBUG
m_bVERTEXCOLOR = false;
#endif // _DEBUG
m_nVERTEXCOLOR = 0;
#ifdef _DEBUG
m_bCUBEMAP = false;
#endif // _DEBUG
m_nCUBEMAP = 0;
#ifdef _DEBUG
m_bDONT_GAMMA_CONVERT_VERTEX_COLOR = false;
#endif // _DEBUG
m_nDONT_GAMMA_CONVERT_VERTEX_COLOR = 0;
}
int GetIndex()
{
// Asserts to make sure that we aren't using any skipped combinations.
// Asserts to make sure that we are setting all of the combination vars.
#ifdef _DEBUG
bool bAllStaticVarsDefined = m_bVERTEXCOLOR && m_bCUBEMAP && m_bDONT_GAMMA_CONVERT_VERTEX_COLOR;
Assert( bAllStaticVarsDefined );
#endif // _DEBUG
return ( 320 * m_nVERTEXCOLOR ) + ( 640 * m_nCUBEMAP ) + ( 1280 * m_nDONT_GAMMA_CONVERT_VERTEX_COLOR ) + 0;
}
};
#define shaderStaticTest_vertexlitpbr_vs30 vsh_forgot_to_set_static_VERTEXCOLOR + vsh_forgot_to_set_static_CUBEMAP + vsh_forgot_to_set_static_DONT_GAMMA_CONVERT_VERTEX_COLOR + 0
class vertexlitpbr_vs30_Dynamic_Index
{
private:
int m_nCOMPRESSED_VERTS;
#ifdef _DEBUG
bool m_bCOMPRESSED_VERTS;
#endif
public:
void SetCOMPRESSED_VERTS( int i )
{
Assert( i >= 0 && i <= 1 );
m_nCOMPRESSED_VERTS = i;
#ifdef _DEBUG
m_bCOMPRESSED_VERTS = true;
#endif
}
void SetCOMPRESSED_VERTS( bool i )
{
m_nCOMPRESSED_VERTS = i ? 1 : 0;
#ifdef _DEBUG
m_bCOMPRESSED_VERTS = true;
#endif
}
private:
int m_nDOWATERFOG;
#ifdef _DEBUG
bool m_bDOWATERFOG;
#endif
public:
void SetDOWATERFOG( int i )
{
Assert( i >= 0 && i <= 1 );
m_nDOWATERFOG = i;
#ifdef _DEBUG
m_bDOWATERFOG = true;
#endif
}
void SetDOWATERFOG( bool i )
{
m_nDOWATERFOG = i ? 1 : 0;
#ifdef _DEBUG
m_bDOWATERFOG = true;
#endif
}
private:
int m_nSKINNING;
#ifdef _DEBUG
bool m_bSKINNING;
#endif
public:
void SetSKINNING( int i )
{
Assert( i >= 0 && i <= 1 );
m_nSKINNING = i;
#ifdef _DEBUG
m_bSKINNING = true;
#endif
}
void SetSKINNING( bool i )
{
m_nSKINNING = i ? 1 : 0;
#ifdef _DEBUG
m_bSKINNING = true;
#endif
}
private:
int m_nLIGHTING_PREVIEW;
#ifdef _DEBUG
bool m_bLIGHTING_PREVIEW;
#endif
public:
void SetLIGHTING_PREVIEW( int i )
{
Assert( i >= 0 && i <= 1 );
m_nLIGHTING_PREVIEW = i;
#ifdef _DEBUG
m_bLIGHTING_PREVIEW = true;
#endif
}
void SetLIGHTING_PREVIEW( bool i )
{
m_nLIGHTING_PREVIEW = i ? 1 : 0;
#ifdef _DEBUG
m_bLIGHTING_PREVIEW = true;
#endif
}
private:
int m_nNUM_LIGHTS;
#ifdef _DEBUG
bool m_bNUM_LIGHTS;
#endif
public:
void SetNUM_LIGHTS( int i )
{
Assert( i >= 0 && i <= 4 );
m_nNUM_LIGHTS = i;
#ifdef _DEBUG
m_bNUM_LIGHTS = true;
#endif
}
void SetNUM_LIGHTS( bool i )
{
m_nNUM_LIGHTS = i ? 1 : 0;
#ifdef _DEBUG
m_bNUM_LIGHTS = true;
#endif
}
private:
int m_nDYNAMIC_LIGHT;
#ifdef _DEBUG
bool m_bDYNAMIC_LIGHT;
#endif
public:
void SetDYNAMIC_LIGHT( int i )
{
Assert( i >= 0 && i <= 1 );
m_nDYNAMIC_LIGHT = i;
#ifdef _DEBUG
m_bDYNAMIC_LIGHT = true;
#endif
}
void SetDYNAMIC_LIGHT( bool i )
{
m_nDYNAMIC_LIGHT = i ? 1 : 0;
#ifdef _DEBUG
m_bDYNAMIC_LIGHT = true;
#endif
}
private:
int m_nSTATIC_LIGHT;
#ifdef _DEBUG
bool m_bSTATIC_LIGHT;
#endif
public:
void SetSTATIC_LIGHT( int i )
{
Assert( i >= 0 && i <= 1 );
m_nSTATIC_LIGHT = i;
#ifdef _DEBUG
m_bSTATIC_LIGHT = true;
#endif
}
void SetSTATIC_LIGHT( bool i )
{
m_nSTATIC_LIGHT = i ? 1 : 0;
#ifdef _DEBUG
m_bSTATIC_LIGHT = true;
#endif
}
public:
vertexlitpbr_vs30_Dynamic_Index()
{
#ifdef _DEBUG
m_bCOMPRESSED_VERTS = false;
#endif // _DEBUG
m_nCOMPRESSED_VERTS = 0;
#ifdef _DEBUG
m_bDOWATERFOG = false;
#endif // _DEBUG
m_nDOWATERFOG = 0;
#ifdef _DEBUG
m_bSKINNING = false;
#endif // _DEBUG
m_nSKINNING = 0;
#ifdef _DEBUG
m_bLIGHTING_PREVIEW = false;
#endif // _DEBUG
m_nLIGHTING_PREVIEW = 0;
#ifdef _DEBUG
m_bNUM_LIGHTS = false;
#endif // _DEBUG
m_nNUM_LIGHTS = 0;
#ifdef _DEBUG
m_bDYNAMIC_LIGHT = false;
#endif // _DEBUG
m_nDYNAMIC_LIGHT = 0;
#ifdef _DEBUG
m_bSTATIC_LIGHT = false;
#endif // _DEBUG
m_nSTATIC_LIGHT = 0;
}
int GetIndex()
{
// Asserts to make sure that we aren't using any skipped combinations.
// Asserts to make sure that we are setting all of the combination vars.
#ifdef _DEBUG
bool bAllDynamicVarsDefined = m_bCOMPRESSED_VERTS && m_bDOWATERFOG && m_bSKINNING && m_bLIGHTING_PREVIEW && m_bNUM_LIGHTS && m_bDYNAMIC_LIGHT && m_bSTATIC_LIGHT;
Assert( bAllDynamicVarsDefined );
#endif // _DEBUG
return ( 1 * m_nCOMPRESSED_VERTS ) + ( 2 * m_nDOWATERFOG ) + ( 4 * m_nSKINNING ) + ( 8 * m_nLIGHTING_PREVIEW ) + ( 16 * m_nNUM_LIGHTS ) + ( 80 * m_nDYNAMIC_LIGHT ) + ( 160 * m_nSTATIC_LIGHT ) + 0;
}
};
#define shaderDynamicTest_vertexlitpbr_vs30 vsh_forgot_to_set_dynamic_COMPRESSED_VERTS + vsh_forgot_to_set_dynamic_DOWATERFOG + vsh_forgot_to_set_dynamic_SKINNING + vsh_forgot_to_set_dynamic_LIGHTING_PREVIEW + vsh_forgot_to_set_dynamic_NUM_LIGHTS + vsh_forgot_to_set_dynamic_DYNAMIC_LIGHT + vsh_forgot_to_set_dynamic_STATIC_LIGHT + 0

View File

@@ -167,6 +167,8 @@ $Project "stdshader_dx9"
$File "worldvertextransition_dx8_helper.cpp"
$File "writez_dx9.cpp"
$File "writestencil_dx9.cpp"
$File "vertexlitPBR_dx9.cpp"
$File "vertexlitPBR_dx9_helper.cpp"
$Folder "Remove me when VAC2 is out" [$WIN32]
{

View File

@@ -51,4 +51,6 @@ warp_vs20.fxc
weapon_sheen_pass_vs20.fxc
weapon_sheen_pass_ps2x.fxc
depthwrite_ps2x.fxc
depthwrite_vs20.fxc
depthwrite_vs20.fxc
vertexlitPBR_ps30.fxc
vertexlitPBR_vs30.fxc

View File

@@ -0,0 +1,350 @@
//===================== Copyright (c) Valve Corporation. All Rights Reserved. ======================
//
// Example pixel shader that can be applied to models
//
//==================================================================================================
// STATIC: "CONVERT_TO_SRGB" "0..0"
// STATIC: "FLASHLIGHT" "0..1"
// STATIC: "CUBEMAP" "0..1"
// STATIC: "CUBEMAP_SPHERE_LEGACY" "0..1"
// STATIC: "SMOOTHNESS" "0..1"
// DYNAMIC: "WRITEWATERFOGTODESTALPHA" "0..1"
// DYNAMIC: "PIXELFOGTYPE" "0..1"
// DYNAMIC: "NUM_LIGHTS" "0..4"
// DYNAMIC: "WRITE_DEPTH_TO_DESTALPHA" "0..1"
// DYNAMIC: "FLASHLIGHTSHADOWS" "0..1"
// DYNAMIC: "LIGHTMAP" "0..1"
// DYNAMIC: "LIGHT_PREVIEW" "0..2"
// We don't care about those in the editor
// SKIP: ($CUBEMAP || FLASHLIGHT ) && $LIGHT_PREVIEW
// SKIP: ($PIXELFOGTYPE == 0) && ($WRITEWATERFOGTODESTALPHA != 0)
// We don't care about flashlight depth unless the flashlight is on
// SKIP: ( $FLASHLIGHT == 0 ) && ( $FLASHLIGHTSHADOWS == 1 )
// SKIP: ( $CUBEMAP == 1 ) && ( $FLASHLIGHT == 1 )
// SKIP: $CUBEMAP_SPHERE_LEGACY && ($CUBEMAP == 0)
// SKIP: ($CUBEMAP || FLASHLIGHT )
#include "common_flashlight_fxc.h"
#include "shader_constant_register_map.h"
#include "common_pbr.h"
#ifdef NV3X
#define PSHADER_VECT_SCALE 20.0
#define VSHADER_VECT_SCALE (1.0 / (PSHADER_VECT_SCALE) )
#else
#define PSHADER_VECT_SCALE 1.0
#define VSHADER_VECT_SCALE 1.0
#endif
const float4 g_DiffuseModulation : register( PSREG_DIFFUSE_MODULATION );
const float4 g_ShadowTweaks : register( PSREG_ENVMAP_TINT__SHADOW_TWEAKS );
const float3 cAmbientCube[6] : register( PSREG_AMBIENT_CUBE );
const float4 g_EyePos : register( PSREG_EYEPOS_SPEC_EXPONENT );
const float4 g_FogParams : register( PSREG_FOG_PARAMS );
#if FLASHLIGHT == 1
sampler ShadowDepthSampler : register( s4 ); // Flashlight shadow depth map sampler
sampler NormalizeRandRotSampler : register( s5 ); // Normalization / RandomRotation samplers
sampler FlashlightSampler : register( s6 ); // Flashlight cookie
const float4 g_FlashlightAttenuationFactors : register( PSREG_FLASHLIGHT_ATTENUATION ); // On non-flashlight pass
const float4 g_FlashlightPos_RimBoost : register( PSREG_FLASHLIGHT_POSITION_RIM_BOOST );
const float4 g_FlashlightColor : register( PSREG_FLASHLIGHT_COLOR );
const float4x4 g_FlashlightWorldToTexture : register( PSREG_FLASHLIGHT_TO_WORLD_TEXTURE );
#endif
PixelShaderLightInfo cLightInfo[3] : register( PSREG_LIGHT_INFO_ARRAY ); // 2 registers each - 6 registers total (4th light spread across w's)
#define g_FlashlightPos g_FlashlightPos_RimBoost.xyz
sampler BaseTextureSampler : register( s0 ); // Base map, selfillum in alpha
sampler RoughnessSampler : register( s1 ); // Roughness
sampler MetallicSampler : register( s2 ); // Metallic
sampler BumpmapSampler : register( s3 ); // Bump map
sampler EnvmapSampler : register( s7 ); // for IBL
sampler BRDFSampler : register( s8 ); // for IBL
sampler AOSampler : register( s9 ); // AO
sampler EmissiveSampler : register( s10 ); // Emissive map
sampler LightmapSampler : register( s11 ); // Lightmap texture from the engine
//DoPBRLight(float3 vWorldPos, float3 vWorldNormal, float3 albedo, float3 vPosition, float3 vColor, float3 vEye, float atten_radius, float3 metallic, float3 roughness)
float3 DoPBRLights(float3 vEye, float3 vWorldNormal, float3 vWorldPos, float4 albedo, float4 atten, float3 lightmap, float metallic, float roughness)
{
float3 linearColor = 0.0;
#if LIGHTMAP ==0
if ( NUM_LIGHTS > 0 )
{
linearColor += DoPBRLight(vWorldPos, vWorldNormal, albedo, cLightInfo[0].pos, cLightInfo[0].color.rgb, vEye, atten.x, metallic, roughness);
if ( NUM_LIGHTS > 1 )
{
linearColor += DoPBRLight( vWorldPos, vWorldNormal, albedo, cLightInfo[1].pos, cLightInfo[1].color.rgb, vEye, atten.x, metallic, roughness);
if ( NUM_LIGHTS > 2 )
{
linearColor += DoPBRLight( vWorldPos, vWorldNormal, albedo, cLightInfo[2].pos, cLightInfo[2].color.rgb, vEye, atten.x, metallic, roughness);
if ( NUM_LIGHTS > 3 )
{
// Unpack the 4th light's data from tight constant packing
float3 vLight3Color = float3( cLightInfo[0].color.w, cLightInfo[0].pos.w, cLightInfo[1].color.w );
float3 vLight3Pos = float3( cLightInfo[1].pos.w, cLightInfo[2].color.w, cLightInfo[2].pos.w );
linearColor += DoPBRLight( vWorldPos, vWorldNormal, albedo, vLight3Pos, vLight3Color, vEye, atten.x, metallic, roughness);
}
}
}
}
#else
if ( NUM_LIGHTS > 0 )
{
float lightmap_atten = dot(lightmap, cLightInfo[0].color.rgb);
lightmap_atten = lightmap_atten * lightmap_atten * 2.0f;
linearColor += DoPBRLight(vWorldPos, vWorldNormal, albedo, cLightInfo[0].pos, cLightInfo[0].color.rgb, vEye, lightmap_atten, metallic, roughness);
if ( NUM_LIGHTS > 1 )
{
lightmap_atten = dot(lightmap, cLightInfo[1].color.rgb);
lightmap_atten = lightmap_atten * lightmap_atten * 2.0f;
linearColor += DoPBRLight( vWorldPos, vWorldNormal, albedo, cLightInfo[1].pos, cLightInfo[1].color.rgb, vEye, lightmap_atten, metallic, roughness);
if ( NUM_LIGHTS > 2 )
{
lightmap_atten = dot(lightmap, cLightInfo[2].color.rgb);
lightmap_atten = lightmap_atten * lightmap_atten * 2.0f;
linearColor += DoPBRLight( vWorldPos, vWorldNormal, albedo, cLightInfo[2].pos, cLightInfo[2].color.rgb, vEye,lightmap_atten, metallic, roughness);
if ( NUM_LIGHTS > 3 )
{
// Unpack the 4th light's data from tight constant packing
float3 vLight3Color = float3( cLightInfo[0].color.w, cLightInfo[0].pos.w, cLightInfo[1].color.w );
float3 vLight3Pos = float3( cLightInfo[1].pos.w, cLightInfo[2].color.w, cLightInfo[2].pos.w );
lightmap_atten = dot(lightmap, vLight3Color);
lightmap_atten = lightmap_atten * lightmap_atten * 2.0f;
linearColor += DoPBRLight( vWorldPos, vWorldNormal, albedo, vLight3Pos, vLight3Color, vEye, lightmap_atten, metallic, roughness);
}
}
}
}
#endif
return linearColor;
}
// https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile
half3 EnvBRDFApprox( half3 SpecularColor, half Roughness, half NoV )
{
const half4 c0 = { -1, -0.0275, -0.572, 0.022 };
const half4 c1 = { 1, 0.0425, 1.04, -0.04 };
half4 r = Roughness * c0 + c1;
half a004 = min( r.x * r.x, exp2( -9.28 * NoV ) ) * r.x + r.y;
half2 AB = half2( -1.04, 1.04 ) * a004 + r.zw;
return SpecularColor * AB.x + AB.y;
}
float3 fresnelSchlickRoughness(float cosTheta, float3 F0, float roughness)
{
return F0 + (max(1.0f.xxx - roughness, F0) - F0) * pow(1.0 - cosTheta, 5.0);
}
float3 DoIBL(float3 vEye, float3 vWorldNormal, float3 vWorldPos, float2 screenUV, float3 albedo, float metallness, float roughness, float3 lightmap)
{
float3 metallic = clamp(metallness, 0.0f, 0.9f);
#if CUBEMAP == 1
float3 V = normalize( vEye - vWorldPos );
float3 N = normalize( vWorldNormal );
//precompute dots
float NV = max(0.0,dot(N, V));
HALF3 reflectVect = 2.0 * NV * N - V;
float4 directionPosX = { 1.0f, 0.01f, 0.01f, 12.0f }; float4 directionNegX = {-1.0f, 0.01f, 0.01f, 12.0f };
float4 directionPosY = { 0.01f, 1.0f, 0.01f, 12.0f }; float4 directionNegY = { 0.01f,-1.0f, 0.01f, 12.0f };
float4 directionPosZ = { 0.01f, 0.01f, 1.0f, 12.0f }; float4 directionNegZ = { 0.01f, 0.01f,-1.0f, 12.0f };
float3 lookupPosX = ENV_MAP_SCALE * texCUBElod(EnvmapSampler, directionPosX);
float3 lookupNegX = ENV_MAP_SCALE * texCUBElod(EnvmapSampler, directionNegX);
float3 lookupPosY = ENV_MAP_SCALE * texCUBElod(EnvmapSampler, directionPosY);
float3 lookupNegY = ENV_MAP_SCALE * texCUBElod(EnvmapSampler, directionNegY);
float3 lookupPosZ = ENV_MAP_SCALE * texCUBElod(EnvmapSampler, directionPosZ);
float3 lookupNegZ = ENV_MAP_SCALE * texCUBElod(EnvmapSampler, directionNegZ);
float3 envmapCube[6] = { lookupPosX, lookupNegX, lookupPosY, lookupNegY, lookupPosZ, lookupNegZ };
#if LIGHTMAP == 0
float3 irradiance = PixelShaderAmbientLight( N, cAmbientCube );
#else
float3 irradiance = lightmap;
#endif
float3 f0 = 0.04f.xxx;
f0 = lerp(f0, albedo.rgb, metallic);
float3 F = fresnelSchlickRoughness(NV, f0, roughness); // ambient Lighting Fresnel Term
half3 BRDF = EnvBRDFApprox(f0, roughness, NV);
float3 kD = 1.0f.xxx - F;
kD *= 1.0 - metallic;
float3 diffuseIBL = kD * albedo * irradiance;
float3 lookup = ENV_MAP_SCALE * texCUBElod(EnvmapSampler, float4(reflectVect, roughness * 12.0)).rgb;
float3 specularIrradiance = lerp(lookup, PixelShaderAmbientLight( reflectVect, envmapCube ), roughness * roughness );
float3 specularIBL = BRDF * specularIrradiance;
//mix
return max(0.0, diffuseIBL + specularIBL);
#else
float3 V = normalize( vEye - vWorldPos );
float3 N = normalize( vWorldNormal );
//precompute dots
float NV = max(0.0,dot(N, V));
#if LIGHTMAP == 0
float3 irradiance = PixelShaderAmbientLight( N, cAmbientCube );
#else
float3 irradiance = lightmap;
#endif
float3 f0 = 0.04f.xxx;
f0 = lerp(f0, albedo.rgb, metallic);
float3 F = fresnelSchlickRoughness(NV, f0, roughness); // ambient Lighting Fresnel Term
float3 kD = 1.0f.xxx - F;
kD *= 1.0 - metallic;
float3 diffuseIBL = kD * albedo * irradiance;
return max(0.0, diffuseIBL);
#endif
}
#if FLASHLIGHT == 1
float3 DoFlashlight(float3 vWorldNormal, float3 vWorldPos, float2 vScreenCords, float3 albedo, float metallic, float roughness)
{
float4 flashlightSpacePosition = mul( float4(vWorldPos, 1.0f ), g_FlashlightWorldToTexture );
float3 vProjCoords = flashlightSpacePosition.xyz / flashlightSpacePosition.w;
float3 flashlightColor = tex2D( FlashlightSampler, vProjCoords);
float3 shadow = 1.0f;
#if FLASHLIGHTSHADOWS
shadow = DoFlashlightShadow( ShadowDepthSampler, NormalizeRandRotSampler, vProjCoords, vScreenCords, 0, g_ShadowTweaks, false );
//shadow = tex2DprojBicubic(ShadowDepthSampler, 512.0f.xx, vProjCoords.xy, vProjCoords.z);
#endif
float2 dist = float2(length(g_FlashlightPos_RimBoost.xyz - vWorldPos), dot(g_FlashlightPos_RimBoost.xyz - vWorldPos,g_FlashlightPos_RimBoost.xyz - vWorldPos));
float fAtten = saturate( dot( g_FlashlightAttenuationFactors.xyz, float3( 1.0f, 1.0f/dist.x, 1.0f/dist.y ) ) );
float3 light = DoPBRLight( vWorldPos, vWorldNormal, albedo, g_FlashlightPos_RimBoost.xyz, flashlightColor.rgb * g_FlashlightColor.xyz, g_EyePos.xyz, shadow * fAtten * g_FlashlightColor.w, metallic, roughness);
return light;
}
#endif
struct PS_INPUT
{
float2 baseTexCoord : TEXCOORD0;
float4 lightAtten : TEXCOORD1;
float3 worldNormal : TEXCOORD2;
float3 worldPos : TEXCOORD3;
float4 projPos : TEXCOORD4;
float4 color : TEXCOORD5;
float3 localPos : TEXCOORD6; // for Irradiance calculations
float4 vWorldTangent: TEXCOORD7;
float3 vWorldBinormal: TEXCOORD8;
};
struct PS_OUTPUT
{
float4 MainOut : COLOR0;
float4 Normal : COLOR1;
float4 MRAO : COLOR2;
float4 Albedo : COLOR3;
};
#if LIGHT_PREVIEW == 2
LPREVIEW_PS_OUT main( PS_INPUT i ) : COLOR
#elif LIGHT_PREVIEW == 1
HALF4 main(PS_INPUT i) : COLOR
#else
PS_OUTPUT main(PS_INPUT i) : COLOR
#endif
{
float2 UV = i.baseTexCoord;
float2 screenUV = i.projPos.xy / i.projPos.w;
screenUV = screenUV * 0.5f + 0.5f;
float4 baseColor = tex2D( BaseTextureSampler, UV );
#if SMOOTHNESS == 0
float roughnessMap = tex2D( RoughnessSampler, UV );
#else
float roughnessMap = 1.0f - tex2D( RoughnessSampler, UV );
#endif
float metallicMap = tex2D( MetallicSampler, UV );
float AOSample = tex2D( AOSampler, UV );
float3 EmissiveSample = tex2D( EmissiveSampler, UV );
float4 normalTexel = tex2D( BumpmapSampler, UV);
float3 lightmapTexel = GammaToLinear( 2.0f * tex2D( LightmapSampler, UV ).rgb );
float3 worldPos = i.worldPos;
float3 worldNormal = i.worldNormal;
float3 eyeToWorld = (g_EyePos - worldPos);
float3 albedo = g_DiffuseModulation.rgb * baseColor.rgb;
bool bCubemap = (CUBEMAP) ? true : false;
float3 tangentSpaceNormal = normalTexel * 2.0f - 1.0f;
float3 vWorldBinormal = i.vWorldBinormal;
float3 vWorldNormal = Vec3TangentToWorld( tangentSpaceNormal, worldNormal, i.vWorldTangent, vWorldBinormal );
vWorldNormal = normalize( vWorldNormal );
float3 projPos = i.projPos.xyz;
float3 Lighting = float(0.0).xxx;
#if LIGHMAP == 0
// Summation of diffuse illumination from all local lights
Lighting = DoPBRLights(g_EyePos.xyz, vWorldNormal, worldPos, baseColor, i.lightAtten, lightmapTexel, metallicMap, roughnessMap);
#endif
float3 IBL = DoIBL(g_EyePos.xyz, vWorldNormal, worldPos, screenUV, baseColor.rgb, metallicMap, roughnessMap, lightmapTexel);
#if FLASHLIGHT
float3 Flashlight = DoFlashlight(vWorldNormal, worldPos, i.projPos.xy / i.projPos.w, baseColor.rgb, metallicMap, roughnessMap);
#endif
float3 result = (
#if FLASHLIGHT
Flashlight);
#else
Lighting + IBL * AOSample) + EmissiveSample;
#endif
float alpha = baseColor.a * g_DiffuseModulation.a;
float fogFactor = CalcPixelFogFactor( PIXELFOGTYPE, g_FogParams, g_EyePos.z, i.worldPos.z, i.projPos.z );
#if WRITEWATERFOGTODESTALPHA && ( PIXELFOGTYPE == PIXEL_FOG_TYPE_HEIGHT )
alpha = fogFactor;
#endif
#if LIGHT_PREVIEW == 1
result = DoPBRLight(worldPos, vWorldNormal, baseColor, g_EyePos.xyz, 1.0f.xxx, g_EyePos.xyz, 5.0f, metallicMap, roughnessMap);
bool bWriteDepthToAlpha = ( WRITE_DEPTH_TO_DESTALPHA != 0 ) && ( WRITEWATERFOGTODESTALPHA == 0 );
return FinalOutput( float4( result, alpha), fogFactor, PIXELFOGTYPE, TONEMAP_SCALE_LINEAR, bWriteDepthToAlpha, i.projPos.z );
#elif LIGHT_PREVIEW == 2
LPREVIEW_PS_OUT Output;
Output.color = float4( baseColor.xyz,alpha );
Output.normal = float4( vWorldNormal,alpha );
Output.position = float4( worldPos, alpha );
Output.flags = float4( 1.0f - metallicMap, roughnessMap, 1, alpha );
return FinalOutput( Output, 0, PIXEL_FOG_TYPE_NONE, TONEMAP_SCALE_NONE );
#else
PS_OUTPUT output = (PS_OUTPUT) 0;
bool bWriteDepthToAlpha = ( WRITE_DEPTH_TO_DESTALPHA != 0 ) && ( WRITEWATERFOGTODESTALPHA == 0 );
output.MainOut = FinalOutput(float4(result, alpha), fogFactor, PIXELFOGTYPE, TONEMAP_SCALE_LINEAR, bWriteDepthToAlpha, i.projPos.z);
#if !FLASHLIGHT
output.Normal = float4(vWorldNormal.xyz, i.projPos.z / i.projPos.w);
output.MRAO = float4(metallicMap, roughnessMap, AOSample, 0.0f);
output.Albedo = float4(baseColor.xyz, 1.0f);
#endif
return output;
#endif
}

View File

@@ -0,0 +1,131 @@
//===================== Copyright (c) Valve Corporation. All Rights Reserved. ======================
//
// Example vertex shader that can be applied to models
//
//==================================================================================================
// STATIC: "VERTEXCOLOR" "0..1"
// STATIC: "CUBEMAP" "0..1"
// STATIC: "DONT_GAMMA_CONVERT_VERTEX_COLOR" "0..1"
// DYNAMIC: "COMPRESSED_VERTS" "0..1"
// DYNAMIC: "DOWATERFOG" "0..1"
// DYNAMIC: "SKINNING" "0..1"
// DYNAMIC: "LIGHTING_PREVIEW" "0..1"
// DYNAMIC: "NUM_LIGHTS" "0..4"
// DYNAMIC: "DYNAMIC_LIGHT" "0..1"
// DYNAMIC: "STATIC_LIGHT" "0..1"
#include "common_vs_fxc.h"
static const bool g_bSkinning = SKINNING ? true : false;
static const bool g_bVertexColor = VERTEXCOLOR ? true : false;
static const int g_FogType = DOWATERFOG;
const float4 cBaseTexCoordTransform[2] : register( SHADER_SPECIFIC_CONST_0 );
//-----------------------------------------------------------------------------
// Input vertex format
//-----------------------------------------------------------------------------
struct VS_INPUT
{
// This is all of the stuff that we ever use.
float4 vPos : POSITION;
float4 vBoneWeights : BLENDWEIGHT;
float4 vBoneIndices : BLENDINDICES;
float4 vNormal : NORMAL;
float2 vTexCoord0 : TEXCOORD0;
float4 vColor : COLOR0;
float3 vTangentS : TANGENT;
float3 vTangentT : BINORMAL;
float4 vUserData : TANGENT;
};
struct VS_OUTPUT
{
// Stuff that isn't seen by the pixel shader
float4 projPosSetup : POSITION;
float fog : FOG;
// Stuff that is seen by the pixel shader
float2 baseTexCoord : TEXCOORD0;
float4 lightAtten : TEXCOORD1;
float3 worldNormal : TEXCOORD2;
float3 worldPos : TEXCOORD3;
float4 projPos : TEXCOORD4;
float4 color : TEXCOORD5; // Vertex color (from lighting or unlit)
float3 localPos : TEXCOORD6; // for Irradiance calculations
float4 vWorldTangent : TEXCOORD7;
float3 vWorldBinormal : TEXCOORD8;
};
//-----------------------------------------------------------------------------
// Main shader entry point
//-----------------------------------------------------------------------------
VS_OUTPUT main( const VS_INPUT v )
{
VS_OUTPUT o = ( VS_OUTPUT )0;
bool bDynamicLight = DYNAMIC_LIGHT ? true : false;
bool bStaticLight = STATIC_LIGHT ? true : false;
bool bDoLighting = !g_bVertexColor && (bDynamicLight || bStaticLight);
float4 vPosition = v.vPos;
float3 vNormal;
float4 vTangent;
DecompressVertex_NormalTangent( v.vNormal, v.vUserData, vNormal, vTangent );
// Perform skinning
float3 worldNormal, worldPos, worldTangentS, worldTangentT;
SkinPositionNormalAndTangentSpace( g_bSkinning, vPosition, vNormal, vTangent,
v.vBoneWeights, v.vBoneIndices, worldPos,
worldNormal, worldTangentS, worldTangentT );
// Always normalize since flex path is controlled by runtime
// constant not a shader combo and will always generate the normalization
worldNormal = normalize( worldNormal );
worldTangentS = normalize( worldTangentS );
worldTangentT = normalize( worldTangentT );
// Transform into projection space
float4 vProjPos = mul( float4( worldPos, 1 ), cViewProj );
o.projPosSetup = vProjPos;
vProjPos.z = dot( float4( worldPos, 1 ), cViewProjZ );
o.projPos = vProjPos;
o.fog = CalcFog( worldPos, vProjPos.xyz, g_FogType );
// Needed for water fog alpha and diffuse lighting
o.worldPos = worldPos;
o.worldNormal.xyz = worldNormal.xyz;
o.vWorldTangent = float4( worldTangentS.xyz, vTangent.w ); // Propagate binormal sign in world tangent.w
o.vWorldBinormal.xyz = worldTangentT.xyz;
if ( g_bVertexColor )
{
// Assume that this is unlitgeneric if you are using vertex color.
o.color.rgb = ( DONT_GAMMA_CONVERT_VERTEX_COLOR ) ? v.vColor.rgb : GammaToLinear( v.vColor.rgb );
o.color.a = v.vColor.a;
}
// Scalar attenuations for four lights
o.lightAtten.xyz = float4(0,0,0,0);
#if ( NUM_LIGHTS > 0 )
o.lightAtten.x = GetVertexAttenForLight( worldPos, 0, false );
#endif
#if ( NUM_LIGHTS > 1 )
o.lightAtten.y = GetVertexAttenForLight( worldPos, 1, false );
#endif
#if ( NUM_LIGHTS > 2 )
o.lightAtten.z = GetVertexAttenForLight( worldPos, 2, false );
#endif
#if ( NUM_LIGHTS > 3 )
o.lightAtten.w = GetVertexAttenForLight( worldPos, 3, false );
#endif
// Base texture coordinate transform
o.baseTexCoord.x = dot( v.vTexCoord0, cBaseTexCoordTransform[0] );
o.baseTexCoord.y = dot( v.vTexCoord0, cBaseTexCoordTransform[1] );
return o;
}