Add C# code examples (salvage of VinnNo's PRs)

This commit is contained in:
Aaron Franke
2021-09-09 12:15:28 -05:00
parent c1b7505ef8
commit da14b8000d
7 changed files with 434 additions and 97 deletions

View File

@@ -80,7 +80,7 @@ released.
onready var _animated_sprite = $AnimatedSprite2D
func _process(delta):
func _process(_delta):
if Input.is_action_pressed("ui_right"):
_animated_sprite.play("run")
else:
@@ -97,7 +97,7 @@ released.
_animatedSprite = GetNode<AnimatedSprite>("AnimatedSprite");
}
public override _Process(float delta)
public override _Process(float _delta)
{
if (Input.IsActionPressed("ui_right"))
{
@@ -219,7 +219,7 @@ released.
onready var _animation_player = $AnimationPlayer
func _process(delta):
func _process(_delta):
if Input.is_action_pressed("ui_right"):
_animation_player.play("walk")
else:
@@ -236,7 +236,7 @@ released.
_animationPlayer = GetNode<AnimationPlayer>("AnimationPlayer");
}
public override void _Process(float delta)
public override void _Process(float _delta)
{
if (Input.IsActionPressed("ui_right"))
{

View File

@@ -360,13 +360,6 @@ calls ``_draw()``. This way, you can control when you want to refresh the frame.
.. code-tab:: csharp
private float Wrap(float value, float minVal, float maxVal)
{
float f1 = value - minVal;
float f2 = maxVal - minVal;
return (f1 % f2) + minVal;
}
public override void _Process(float delta)
{
_angleFrom += _rotationAngle;
@@ -375,8 +368,8 @@ calls ``_draw()``. This way, you can control when you want to refresh the frame.
// We only wrap angles when both of them are bigger than 360.
if (_angleFrom > 360 && _angleTo > 360)
{
_angleFrom = Wrap(_angleFrom, 0, 360);
_angleTo = Wrap(_angleTo, 0, 360);
_angleFrom = Mathf.Wrap(_angleFrom, 0, 360);
_angleTo = Mathf.Wrap(_angleTo, 0, 360);
}
Update();
}

View File

@@ -31,8 +31,16 @@ change the value of ``t`` from 0 to 1.
.. code-tab:: gdscript GDScript
func _quadratic_bezier(p0: Vector2, p1: Vector2, p2: Vector2, t: float):
var q0 = p0.linear_interpolate(p1, t)
var q1 = p1.linear_interpolate(p2, t)
var q0 = p0.lerp(p1, t)
var q1 = p1.lerp(p2, t)
.. code-tab:: csharp
private Vector2 QuadraticBezier(Vector2 p0, Vector2 p1, Vector2 p2, float t)
{
Vector2 q0 = p0.Lerp(p1, t);
Vector2 q1 = p1.Lerp(p2, t);
}
We then interpolate ``q0`` and ``q1`` to obtain a single point ``r`` that moves
along a curve.
@@ -40,9 +48,14 @@ along a curve.
.. tabs::
.. code-tab:: gdscript GDScript
var r = q0.linear_interpolate(q1, t)
var r = q0.lerp(q1, t)
return r
.. code-tab:: csharp
Vector2 r = q0.Lerp(q1, t);
return r;
This type of curve is called a *Quadratic Bezier* curve.
.. image:: img/bezier_quadratic_points2.gif
@@ -65,48 +78,86 @@ We first use a function with four parameters to take four points as an input,
func _cubic_bezier(p0: Vector2, p1: Vector2, p2: Vector2, p3: Vector2, t: float):
.. code-tab:: csharp
public Vector2 CubicBezier(Vector2 p0, Vector2 p1, Vector2 p2, Vector2 p3, float t)
{
}
We apply a linear interpolation to each couple of points to reduce them to
three:
.. tabs::
.. code-tab:: gdscript GDScript
var q0 = p0.linear_interpolate(p1, t)
var q1 = p1.linear_interpolate(p2, t)
var q2 = p2.linear_interpolate(p3, t)
var q0 = p0.lerp(p1, t)
var q1 = p1.lerp(p2, t)
var q2 = p2.lerp(p3, t)
.. code-tab:: csharp
Vector2 q0 = p0.Lerp(p1, t);
Vector2 q1 = p1.Lerp(p2, t);
Vector2 q2 = p2.Lerp(p3, t);
We then take our three points and reduce them to two:
.. tabs::
.. code-tab:: gdscript GDScript
var r0 = q0.linear_interpolate(q1, t)
var r1 = q1.linear_interpolate(q2, t)
var r0 = q0.lerp(q1, t)
var r1 = q1.lerp(q2, t)
.. code-tab:: csharp
Vector2 r0 = q0.Lerp(q1, t);
Vector2 r1 = q1.Lerp(q2, t);
And to one:
.. tabs::
.. code-tab:: gdscript GDScript
var s = r0.linear_interpolate(r1, t)
var s = r0.lerp(r1, t)
return s
.. code-tab:: csharp
Vector2 s = r0.Lerp(r1, t);
return s;
Here is the full function:
.. tabs::
.. code-tab:: gdscript GDScript
func _cubic_bezier(p0: Vector2, p1: Vector2, p2: Vector2, p3: Vector2, t: float):
var q0 = p0.linear_interpolate(p1, t)
var q1 = p1.linear_interpolate(p2, t)
var q2 = p2.linear_interpolate(p3, t)
var q0 = p0.lerp(p1, t)
var q1 = p1.lerp(p2, t)
var q2 = p2.lerp(p3, t)
var r0 = q0.linear_interpolate(q1, t)
var r1 = q1.linear_interpolate(q2, t)
var r0 = q0.lerp(q1, t)
var r1 = q1.lerp(q2, t)
var s = r0.linear_interpolate(r1, t)
var s = r0.lerp(r1, t)
return s
.. code-tab:: csharp
private Vector2 CubicBezier(Vector2 p0, Vector2 p1, Vector2 p2, Vector2 p3, float t)
{
Vector2 q0 = p0.Lerp(p1, t);
Vector2 q1 = p1.Lerp(p2, t);
Vector2 q2 = p2.Lerp(p3, t);
Vector2 r0 = q0.Lerp(q1, t);
Vector2 r1 = q1.Lerp(q2, t);
Vector2 s = r0.Lerp(r1, t);
return s;
}
The result will be a smooth curve interpolating between all four points:
.. image:: img/bezier_cubic_points.gif
@@ -164,6 +215,15 @@ Let's do an example with the following pseudocode:
t += delta
position = _cubic_bezier(p0, p1, p2, p3, t)
.. code-tab:: csharp
private float _t = 0.0f;
public override void _Process(float delta)
{
_t += delta;
Position = CubicBezier(p0, p1, p2, p3, _t);
}
.. image:: img/bezier_interpolation_speed.gif
@@ -204,6 +264,16 @@ Traversal at constant speed, then, can be done with the following pseudo-code:
t += delta
position = curve.interpolate_baked(t * curve.get_baked_length(), true)
.. code-tab:: csharp
private float _t = 0.0f;
public override void _Process(float delta)
{
_t += delta;
Position = curve.InterpolateBaked(_t * curve.GetBakedLength(), true);
}
And the output will, then, move at constant speed:
.. image:: img/bezier_interpolation_baked.gif

View File

@@ -11,15 +11,13 @@ For example, if ``t`` is 0, then the state is A. If ``t`` is 1, then the state i
Between two real (floating-point) numbers, an interpolation can be described as:
.. tabs::
.. code-tab:: gdscript GDScript
::
interpolation = A * (1 - t) + B * t
And often simplified to:
.. tabs::
.. code-tab:: gdscript GDScript
::
interpolation = A + (B - A) * t
@@ -31,7 +29,7 @@ Vector interpolation
--------------------
Vector types (:ref:`Vector2 <class_Vector2>` and :ref:`Vector3 <class_Vector3>`) can also be interpolated, they come with handy functions to do it
:ref:`Vector2.linear_interpolate() <class_Vector2_method_linear_interpolate>` and :ref:`Vector3.linear_interpolate() <class_Vector3_method_linear_interpolate>`.
:ref:`Vector2.lerp() <class_Vector2_method_lerp>` and :ref:`Vector3.lerp() <class_Vector3_method_lerp>`.
For cubic interpolation, there are also :ref:`Vector2.cubic_interpolate() <class_Vector2_method_cubic_interpolate>` and :ref:`Vector3.cubic_interpolate() <class_Vector3_method_cubic_interpolate>`, which do a :ref:`Bezier <doc_beziers_and_curves>` style interpolation.
@@ -40,10 +38,27 @@ Here is example pseudo-code for going from point A to B using interpolation:
.. tabs::
.. code-tab:: gdscript GDScript
var t = 0.0
func _physics_process(delta):
t += delta * 0.4
$Sprite2D.position = $A.position.linear_interpolate($B.position, t)
$Sprite2D.position = $A.position.lerp($B.position, t)
.. code-tab:: csharp
private float _t = 0.0f;
public override void _PhysicsProcess(float delta)
{
_t += delta * 0.4f;
Position2D a = GetNode<Position2D>("A");
Position2D b = GetNode<Position2D>("B");
Sprite2D sprite = GetNode<Sprite2D>("Sprite2D");
sprite.Position = a.Position.Lerp(b.Position, _t);
}
It will produce the following motion:
@@ -71,6 +86,21 @@ Using the following pseudocode:
$Monkey.transform = $Position1.transform.interpolate_with($Position2.transform, t)
.. code-tab:: csharp
private float _t = 0.0f;
public override void _PhysicsProcess(float delta)
{
_t += delta;
Position3D p1 = GetNode<Position3D>("Position1");
Position3D p2 = GetNode<Position3D>("Position2");
CSGMesh monkey = GetNode<CSGMesh>("Monkey");
monkey.Transform = p1.Transform.InterpolateWith(p2.Transform, _t);
}
And again, it will produce the following motion:
.. image:: img/interpolation_monkey.gif
@@ -89,7 +119,20 @@ Interpolation can be used to smooth movement, rotation, etc. Here is an example
func _physics_process(delta):
var mouse_pos = get_local_mouse_position()
$Sprite2D.position = $Sprite2D.position.linear_interpolate(mouse_pos, delta * FOLLOW_SPEED)
$Sprite2D.position = $Sprite2D.position.lerp(mouse_pos, delta * FOLLOW_SPEED)
.. code-tab:: csharp
private const float FollowSpeed = 4.0f;
public override void _PhysicsProcess(float delta)
{
Vector2 mousePos = GetLocalMousePosition();
Sprite2D sprite = GetNode<Sprite2D>("Sprite2D");
sprite.Position = sprite.Position.Lerp(mousePos, delta * FollowSpeed);
}
Here is how it looks:

View File

@@ -42,25 +42,54 @@ In global scope, you can find a :ref:`randomize()
once when your project starts to initialize the random seed.** Calling it
multiple times is unnecessary and may impact performance negatively.
Putting it in your main scene script's ``_ready()`` method is a good choice::
Putting it in your main scene script's ``_ready()`` method is a good choice:
.. tabs::
.. code-tab:: gdscript GDScript
func _ready():
randomize()
.. code-tab:: csharp
public override void _Ready()
{
GD.Randomize();
}
You can also set a fixed random seed instead using :ref:`seed()
<class_@GDScript_method_seed>`. Doing so will give you *deterministic* results
across runs::
across runs:
.. tabs::
.. code-tab:: gdscript GDScript
func _ready():
seed(12345)
# To use a string as a seed, you can hash it to a number.
seed("Hello world".hash())
When using the RandomNumberGenerator class, you should call ``randomize()`` on
the instance since it has its own seed::
.. code-tab:: csharp
var rng = RandomNumberGenerator.new()
rng.randomize()
public override void _Ready()
{
GD.Seed(12345);
GD.Seed("Hello world".Hash());
}
When using the RandomNumberGenerator class, you should call ``randomize()`` on
the instance since it has its own seed:
.. tabs::
.. code-tab:: gdscript GDScript
var random = RandomNumberGenerator.new()
random.randomize()
.. code-tab:: csharp
var random = new RandomNumberGenerator();
random.Randomize();
Getting a random number
-----------------------
@@ -71,7 +100,10 @@ random numbers in Godot.
The function :ref:`randi() <class_@GDScript_method_randi>` returns a random
number between 0 and 2^32-1. Since the maximum value is huge, you most likely
want to use the modulo operator (``%``) to bound the result between 0 and the
denominator::
denominator:
.. tabs::
.. code-tab:: gdscript GDScript
# Prints a random integer between 0 and 49.
print(randi() % 50)
@@ -79,6 +111,14 @@ denominator::
# Prints a random integer between 10 and 60.
print(randi() % 51 + 10)
.. code-tab:: csharp
// Prints a random integer between 0 and 49.
GD.Print(GD.Randi() % 50);
// Prints a random integer between 10 and 60.
GD.Print(GD.Randi() % 51 + 10);
:ref:`randf() <class_@GDScript_method_randf>` returns a random floating-point
number between 0 and 1. This is useful to implement a
:ref:`doc_random_number_generation_weighted_random_probability` system, among
@@ -87,83 +127,169 @@ other things.
:ref:`randfn() <class_RandomNumberGenerator_method_randfn>` returns a random
floating-point number following a `normal distribution
<https://en.wikipedia.org/wiki/Normal_distribution>`__. This means the returned
value is more likely to be around the mean (0.0 by default), varying by the deviation (1.0 by default)::
value is more likely to be around the mean (0.0 by default),
varying by the deviation (1.0 by default):
.. tabs::
.. code-tab:: gdscript GDScript
# Prints a random floating-point number from a normal distribution with a mean 0.0 and deviation 1.0.
var rng = RandomNumberGenerator.new()
rng.randomize()
print(rng.randfn())
var random = RandomNumberGenerator.new()
random.randomize()
print(random.randfn())
.. code-tab:: csharp
// Prints a normally distributed floating-point number between 0.0 and 1.0.
var random = new RandomNumberGenerator();
random.Randomize();
GD.Print(random.Randfn());
:ref:`rand_range() <class_@GDScript_method_rand_range>` takes two arguments
``from`` and ``to``, and returns a random floating-point number between ``from``
and ``to``::
and ``to``:
.. tabs::
.. code-tab:: gdscript GDScript
# Prints a random floating-point number between -4 and 6.5.
print(rand_range(-4, 6.5))
.. code-tab:: csharp
// Prints a random floating-point number between -4 and 6.5.
GD.Print(GD.RandRange(-4, 6.5));
:ref:`RandomNumberGenerator.randi_range()
<class_RandomNumberGenerator_method_randi_range>` takes two arguments ``from``
and ``to``, and returns a random integer between ``from`` and ``to``::
and ``to``, and returns a random integer between ``from`` and ``to``:
.. tabs::
.. code-tab:: gdscript GDScript
# Prints a random integer between -10 and 10.
var rng = RandomNumberGenerator.new()
rng.randomize()
print(rng.randi_range(-10, 10))
var random = RandomNumberGenerator.new()
random.randomize()
print(random.randi_range(-10, 10))
.. code-tab:: csharp
# Prints a random integer number between -10 and 10.
random.Randomize();
GD.Print(random.RandiRange(-10, 10));
Get a random array element
--------------------------
We can use random integer generation to get a random element from an array::
We can use random integer generation to get a random element from an array:
var fruits = ["apple", "orange", "pear", "banana"]
.. tabs::
.. code-tab:: gdscript GDScript
var _fruits = ["apple", "orange", "pear", "banana"]
func _ready():
randomize()
for i in 100:
for i in range(100):
# Pick 100 fruits randomly.
# (``for i in 100`` is a faster shorthand for ``for i in range(100)``.)
print(get_fruit())
func get_fruit():
var random_fruit = fruits[randi() % fruits.size()]
var random_fruit = _fruits[randi() % _fruits.size()]
# Returns "apple", "orange", "pear", or "banana" every time the code runs.
# We may get the same fruit multiple times in a row.
return random_fruit
To prevent the same fruit from being picked more than once in a row, we can add
more logic to this method::
.. code-tab:: csharp
var fruits = ["apple", "orange", "pear", "banana"]
var last_fruit = ""
private string[] _fruits = { "apple", "orange", "pear", "banana" };
public override void _Ready()
{
GD.Randomize();
for (int i = 0; i < 100; i++)
{
// Pick 100 fruits randomly.
GD.Print(GetFruit());
}
}
public string GetFruit()
{
string randomFruit = _fruits[GD.Randi() % _fruits.Length];
// Returns "apple", "orange", "pear", or "banana" every time the code runs.
// We may get the same fruit multiple times in a row.
return randomFruit;
}
To prevent the same fruit from being picked more than once in a row, we can add
more logic to this method:
.. tabs::
.. code-tab:: gdscript GDScript
var _fruits = ["apple", "orange", "pear", "banana"]
var _last_fruit = ""
func _ready():
randomize()
# Pick 100 fruits randomly.
# Note: ``for i in 100`` is a shorthand for ``for i in range(100)``.
for i in 100:
for i in range(100):
print(get_fruit())
func get_fruit():
var random_fruit = fruits[randi() % fruits.size()]
while random_fruit == last_fruit:
var random_fruit = _fruits[randi() % _fruits.size()]
while random_fruit == _last_fruit:
# The last fruit was picked, try again until we get a different fruit.
random_fruit = fruits[randi() % fruits.size()]
random_fruit = _fruits[randi() % _fruits.size()]
# Note: if the random element to pick is passed by reference,
# such as an array or dictionary,
# use `last_fruit = random_fruit.duplicate()` instead.
last_fruit = random_fruit
# use `_last_fruit = random_fruit.duplicate()` instead.
_last_fruit = random_fruit
# Returns "apple", "orange", "pear", or "banana" every time the code runs.
# The function will never return the same fruit more than once in a row.
return random_fruit
.. code-tab:: csharp
private string[] _fruits = { "apple", "orange", "pear", "banana" };
private string _lastFruit = "";
public override void _Ready()
{
GD.Randomize();
for (int i = 0; i < 100; i++)
{
// Pick 100 fruits randomly.
GD.Print(GetFruit());
}
}
public string GetFruit()
{
string randomFruit = _fruits[GD.Randi() % _fruits.Length];
while (randomFruit == _lastFruit)
{
// The last fruit was picked, try again until we get a different fruit.
randomFruit = _fruits[GD.Randi() % _fruits.Length];
}
_lastFruit = randomFruit;
// Returns "apple", "orange", "pear", or "banana" every time the code runs.
// The function will never return the same fruit more than once in a row.
return randomFruit;
}
This approach can be useful to make random number generation feel less
repetitive. Still, it doesn't prevent results from "ping-ponging" between a
limited set of values. To prevent this, use the :ref:`shuffle bag
@@ -172,7 +298,10 @@ limited set of values. To prevent this, use the :ref:`shuffle bag
Get a random dictionary value
-----------------------------
We can apply similar logic from arrays to dictionaries as well::
We can apply similar logic from arrays to dictionaries as well:
.. tabs::
.. code-tab:: gdscript GDScript
var metals = {
"copper": {"quantity": 50, "price": 50},
@@ -184,7 +313,7 @@ We can apply similar logic from arrays to dictionaries as well::
func _ready():
randomize()
for i in 20:
for i in range(20):
print(get_metal())
@@ -194,7 +323,6 @@ We can apply similar logic from arrays to dictionaries as well::
# The same metal may be selected multiple times in succession.
return random_metal
.. _doc_random_number_generation_weighted_random_probability:
Weighted random probability
@@ -202,12 +330,15 @@ Weighted random probability
The :ref:`randf() <class_@GDScript_method_randf>` method returns a
floating-point number between 0.0 and 1.0. We can use this to create a
"weighted" probability where different outcomes have different likelihoods::
"weighted" probability where different outcomes have different likelihoods:
.. tabs::
.. code-tab:: gdscript GDScript
func _ready():
randomize()
for i in 100:
for i in range(100):
print(get_item_rarity())
@@ -224,6 +355,39 @@ floating-point number between 0.0 and 1.0. We can use this to create a
# 5% chance of being returned.
return "Rare"
.. code-tab:: csharp
public override void _Ready()
{
GD.Randomize();
for (int i = 0; i < 100; i++)
{
GD.Print(GetItemRarity());
}
}
public string GetItemRarity()
{
float randomFloat = GD.Randf();
if (randomFloat < 0.8f)
{
// 80% chance of being returned.
return "Common";
}
else if (randomFloat < 0.95f)
{
// 15% chance of being returned
return "Uncommon";
}
else
{
// 5% chance of being returned.
return "Rare";
}
}
.. _doc_random_number_generation_shuffle_bags:
"Better" randomness using shuffle bags
@@ -238,29 +402,29 @@ You can accomplish this using the *shuffle bag* pattern. It works by removing an
element from the array after choosing it. After multiple selections, the array
ends up empty. When that happens, you reinitialize it to its default value::
var fruits = ["apple", "orange", "pear", "banana"]
var _fruits = ["apple", "orange", "pear", "banana"]
# A copy of the fruits array so we can restore the original value into `fruits`.
var fruits_full = []
var _fruits_full = []
func _ready():
randomize()
fruits_full = fruits.duplicate()
fruits.shuffle()
_fruits_full = _fruits.duplicate()
_fruits.shuffle()
for i in 100:
print(get_fruit())
func get_fruit():
if fruits.empty():
if _fruits.empty():
# Fill the fruits array again and shuffle it.
fruits = fruits_full.duplicate()
fruits.shuffle()
_fruits = _fruits_full.duplicate()
_fruits.shuffle()
# Get a random fruit, since we shuffled the array,
# and remove it from the `fruits` array.
var random_fruit = fruits.pop_front()
# and remove it from the `_fruits` array.
var random_fruit = _fruits.pop_front()
# Prints "apple", "orange", "pear", or "banana" every time the code runs.
return random_fruit
@@ -279,19 +443,41 @@ time, or anything else.
To achieve this, you can use random *noise* functions. Noise functions are
especially popular in procedural generation to generate realistic-looking
terrain. Godot provides :ref:`class_opensimplexnoise` for this, which supports
1D, 2D, 3D, and 4D noise. Here's an example with 1D noise::
1D, 2D, 3D, and 4D noise. Here's an example with 1D noise:
var noise = OpenSimplexNoise.new()
.. tabs::
.. code-tab:: gdscript GDScript
var _noise = OpenSimplexNoise.new()
func _ready():
randomize()
# Configure the OpenSimplexNoise instance.
noise.seed = randi()
noise.octaves = 4
noise.period = 20.0
noise.persistence = 0.8
_noise.seed = randi()
_noise.octaves = 4
_noise.period = 20.0
_noise.persistence = 0.8
for i in 100:
# Prints a slowly-changing series of floating-point numbers
# between -1.0 and 1.0.
print(noise.get_noise_1d(i))
print(_noise.get_noise_1d(i))
.. code-tab:: csharp
private OpenSimplexNoise _noise = new OpenSimplexNoise();
public override void _Ready()
{
GD.Randomize();
// Configure the OpenSimplexNoise instance.
_noise.Seed = (int)GD.Randi();
_noise.Octaves = 4;
_noise.Period = 20.0f;
_noise.Persistence = 0.8f;
for (int i = 0; i < 100; i++)
{
GD.Print(_noise.GetNoise1d(i));
}
}

View File

@@ -161,8 +161,8 @@ it as if it was an image (via :ref:`ViewportContainer <class_ViewportContainer>`
Creating custom Containers
--------------------------
It is possible to easily create a custom container using script. Here is an example of a container that fits children
to its rect size:
It is possible to create a custom container using a script.
Here is an example of a container that fits children to its rect size:
.. tabs::
.. code-tab:: gdscript GDScript
@@ -174,8 +174,34 @@ to its rect size:
# Must re-sort the children
for c in get_children():
# Fit to own size
fit_child_in_rect( c, Rect2( Vector2(), rect_size ) )
fit_child_in_rect(c, Rect2(Vector2(), rect_size))
func set_some_setting():
# Some setting changed, ask for children re-sort
# Some setting changed, ask for children re-sort.
queue_sort()
.. code-tab:: csharp
using Godot;
public class CustomContainer : Container
{
public override void _Notification(int what)
{
if (what == NotificationSortChildren)
{
// Must re-sort the children
foreach (Control c in GetChildren())
{
// Fit to own size
FitChildInRect(c, new Rect2(new Vector2(), RectSize));
}
}
}
public void SetSomeSetting()
{
// Some setting changed, ask for children re-sort.
QueueSort();
}
}

View File

@@ -63,7 +63,8 @@ To center a control in its parent, set its anchors to 0.5 and each margin
to half of its relevant dimension. For example, the code below shows how
a TextureRect can be centered in its parent:
::
.. tabs::
.. code-tab:: gdscript GDScript
var rect = TextureRect.new()
rect.texture = load("res://icon.png")
@@ -72,12 +73,30 @@ a TextureRect can be centered in its parent:
rect.anchor_top = 0.5
rect.anchor_bottom = 0.5
var texture_size = rect.texture.get_size()
rect.margin_left = -texture_size.x / 2
rect.margin_right = -texture_size.x / 2
rect.margin_top = -texture_size.y / 2
rect.margin_bottom = -texture_size.y / 2
rect.offset_left = -texture_size.x / 2
rect.offset_right = texture_size.x / 2
rect.offset_top = -texture_size.y / 2
rect.offset_bottom = texture_size.y / 2
add_child(rect)
.. code-tab:: csharp
var rect = new TextureRect();
rect.Texture = ResourceLoader.Load<Texture>("res://icon.png");
rect.AnchorLeft = 0.5f;
rect.AnchorRight = 0.5f;
rect.AnchorTop = 0.5f;
rect.AnchorBottom = 0.5f;
var textureSize = rect.Texture.GetSize();
rect.OffsetLeft = -textureSize.x / 2;
rect.OffsetRight = textureSize.x / 2;
rect.OffsetTop = -textureSize.y / 2;
rect.OffsetBottom = textureSize.y / 2;
AddChild(rect);
Setting each anchor to 0.5 moves the reference point for the margins to
the center of its parent. From there, we set negative margins so that
the control gets its natural size.