Implemented validation for loop and indexing limitations specified by GLSL ES spec 1.0 Appendix A Section 4 and 5.

A couple of things to note:
- This CL only validates the "form" of loop and indexing. It does not detect number-of-iterations or out-of-bound access. This will require more involved analysis/heuristics.
- I haved combined SH_VALIDATE_CONTROL_FLOW and SH_VALIDATE_INDEXING into one flag - SH_VALIDATE_LOOP_INDEXING. Validating both together is much easier.
BUG=48
Review URL: http://codereview.appspot.com/3225041

git-svn-id: https://angleproject.googlecode.com/svn/trunk@491 736b8ea6-26fd-11df-bfd4-992fa37f6226
This commit is contained in:
alokp@chromium.org
2010-11-24 18:38:33 +00:00
parent 9d1c9b4b7a
commit b59a778cfe
8 changed files with 662 additions and 25 deletions

View File

@@ -17,7 +17,7 @@ extern "C" {
// Version number for shader translation API.
// It is incremented everytime the API changes.
#define SH_VERSION 102
#define SH_VERSION 103
//
// The names of the following enums have been derived by replacing GL prefix
@@ -67,12 +67,11 @@ typedef enum {
// Compile options.
typedef enum {
SH_VALIDATE = 0,
SH_VALIDATE_CONTROL_FLOW = 0x0001,
SH_VALIDATE_INDEXING = 0x0002,
SH_INTERMEDIATE_TREE = 0x0004,
SH_OBJECT_CODE = 0x0008,
SH_ATTRIBUTES_UNIFORMS = 0x0010
SH_VALIDATE = 0,
SH_VALIDATE_LOOP_INDEXING = 0x0001,
SH_INTERMEDIATE_TREE = 0x0002,
SH_OBJECT_CODE = 0x0004,
SH_ATTRIBUTES_UNIFORMS = 0x0008
} ShCompileOptions;
//
@@ -146,16 +145,12 @@ void ShDestruct(ShHandle handle);
// compileOptions: A mask containing the following parameters:
// SH_VALIDATE: Validates shader to ensure that it conforms to the spec
// specified during compiler construction.
// SH_VALIDATE_CONTROL_FLOW: Validates control flow in the shader to ensure
// that they do not exceed the minimum functionality
// mandated in GLSL 1.0 spec, Appendix A, Section 4.
// There is no need to specify this parameter when
// compiling for WebGL - it is implied.
// SH_VALIDATE_INDEXING: Validates indexing of arrays, vectors, and matrices
// in the shader to ensure that they do not exceed the
// minimum functionality mandated in GLSL 1.0 spec,
// Appendix A, Section 5. There is no need to specify this
// parameter when compiling for WebGL - it is implied.
// SH_VALIDATE_LOOP_INDEXING: Validates loop and indexing in the shader to
// ensure that they do not exceed the minimum
// functionality mandated in GLSL 1.0 spec,
// Appendix A, Section 4 and 5.
// There is no need to specify this parameter when
// compiling for WebGL - it is implied.
// SH_INTERMEDIATE_TREE: Writes intermediate tree to info log.
// Can be queried by calling ShGetInfoLog().
// SH_OBJECT_CODE: Translates intermediate tree to glsl or hlsl shader.

View File

@@ -59,6 +59,8 @@
'compiler/unistd.h',
'compiler/util.cpp',
'compiler/util.h',
'compiler/ValidateLimitations.cpp',
'compiler/ValidateLimitations.h',
'compiler/VariableInfo.cpp',
'compiler/VariableInfo.h',
'compiler/preprocessor/atom.c',

View File

@@ -7,6 +7,7 @@
#include "compiler/Initialize.h"
#include "compiler/ParseHelper.h"
#include "compiler/ShHandle.h"
#include "compiler/ValidateLimitations.h"
namespace {
bool InitializeSymbolTable(
@@ -110,10 +111,9 @@ bool TCompiler::compile(const char* const shaderStrings[],
if (numStrings == 0)
return true;
// If compiling for WebGL, validate control-flow and indexing as well.
if (shaderSpec == SH_WEBGL_SPEC) {
compileOptions |= SH_VALIDATE_CONTROL_FLOW | SH_VALIDATE_INDEXING;
}
// If compiling for WebGL, validate loop and indexing as well.
if (shaderSpec == SH_WEBGL_SPEC)
compileOptions |= SH_VALIDATE_LOOP_INDEXING;
TIntermediate intermediate(infoSink);
TParseContext parseContext(symbolTable, extensionBehavior, intermediate,
@@ -131,16 +131,20 @@ bool TCompiler::compile(const char* const shaderStrings[],
(PaParseStrings(numStrings, shaderStrings, NULL, &parseContext) == 0) &&
(parseContext.treeRoot != NULL);
if (success) {
success = intermediate.postProcess(parseContext.treeRoot);
TIntermNode* root = parseContext.treeRoot;
success = intermediate.postProcess(root);
if (success && (compileOptions & SH_VALIDATE_LOOP_INDEXING))
success = validateLimitations(root);
if (success && (compileOptions & SH_INTERMEDIATE_TREE))
intermediate.outputTree(parseContext.treeRoot);
intermediate.outputTree(root);
if (success && (compileOptions & SH_OBJECT_CODE))
translate(parseContext.treeRoot);
translate(root);
if (success && (compileOptions & SH_ATTRIBUTES_UNIFORMS))
collectAttribsUniforms(parseContext.treeRoot);
collectAttribsUniforms(root);
}
// Cleanup memory.
@@ -172,6 +176,12 @@ void TCompiler::clearResults()
uniforms.clear();
}
bool TCompiler::validateLimitations(TIntermNode* root) {
ValidateLimitations validate(shaderType, infoSink.info);
root->traverse(&validate);
return validate.numErrors() == 0;
}
void TCompiler::collectAttribsUniforms(TIntermNode* root)
{
CollectAttribsUniforms collect(attribs, uniforms);

View File

@@ -22,6 +22,101 @@ static TPrecision GetHigherPrecision( TPrecision left, TPrecision right ){
return left > right ? left : right;
}
const char* getOperatorString(TOperator op) {
switch (op) {
case EOpInitialize: return "=";
case EOpAssign: return "=";
case EOpAddAssign: return "+=";
case EOpSubAssign: return "-=";
case EOpDivAssign: return "/=";
// Fall-through.
case EOpMulAssign:
case EOpVectorTimesMatrixAssign:
case EOpVectorTimesScalarAssign:
case EOpMatrixTimesScalarAssign:
case EOpMatrixTimesMatrixAssign: return "*=";
// Fall-through.
case EOpIndexDirect:
case EOpIndexIndirect: return "[]";
case EOpIndexDirectStruct: return ".";
case EOpVectorSwizzle: return ".";
case EOpAdd: return "+";
case EOpSub: return "-";
case EOpMul: return "*";
case EOpDiv: return "/";
case EOpMod: UNIMPLEMENTED(); break;
case EOpEqual: return "==";
case EOpNotEqual: return "!=";
case EOpLessThan: return "<";
case EOpGreaterThan: return ">";
case EOpLessThanEqual: return "<=";
case EOpGreaterThanEqual: return ">=";
// Fall-through.
case EOpVectorTimesScalar:
case EOpVectorTimesMatrix:
case EOpMatrixTimesVector:
case EOpMatrixTimesScalar:
case EOpMatrixTimesMatrix: return "*";
case EOpLogicalOr: return "||";
case EOpLogicalXor: return "^^";
case EOpLogicalAnd: return "&&";
case EOpNegative: return "-";
case EOpVectorLogicalNot: return "not";
case EOpLogicalNot: return "!";
case EOpPostIncrement: return "++";
case EOpPostDecrement: return "--";
case EOpPreIncrement: return "++";
case EOpPreDecrement: return "--";
// Fall-through.
case EOpConvIntToBool:
case EOpConvFloatToBool: return "bool";
// Fall-through.
case EOpConvBoolToFloat:
case EOpConvIntToFloat: return "float";
// Fall-through.
case EOpConvFloatToInt:
case EOpConvBoolToInt: return "int";
case EOpRadians: return "radians";
case EOpDegrees: return "degrees";
case EOpSin: return "sin";
case EOpCos: return "cos";
case EOpTan: return "tan";
case EOpAsin: return "asin";
case EOpAcos: return "acos";
case EOpAtan: return "atan";
case EOpExp: return "exp";
case EOpLog: return "log";
case EOpExp2: return "exp2";
case EOpLog2: return "log2";
case EOpSqrt: return "sqrt";
case EOpInverseSqrt: return "inversesqrt";
case EOpAbs: return "abs";
case EOpSign: return "sign";
case EOpFloor: return "floor";
case EOpCeil: return "ceil";
case EOpFract: return "fract";
case EOpLength: return "length";
case EOpNormalize: return "normalize";
case EOpDFdx: return "dFdx";
case EOpDFdy: return "dFdy";
case EOpFwidth: return "fwidth";
case EOpAny: return "any";
case EOpAll: return "all";
default: break;
}
return "";
}
////////////////////////////////////////////////////////////////////////////
//
// First set of functions are to help build the intermediate representation.

View File

@@ -65,6 +65,9 @@ protected:
bool InitBuiltInSymbolTable(const ShBuiltInResources& resources);
// Clears the results from the previous compilation.
void clearResults();
// Returns true if the given shader does not exceed the minimum
// functionality mandated in GLSL 1.0 spec Appendix A.
bool validateLimitations(TIntermNode* root);
// Collect info for all attribs and uniforms.
void collectAttribsUniforms(TIntermNode* root);
// Translate to object code.

View File

@@ -0,0 +1,468 @@
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/ValidateLimitations.h"
#include "compiler/InfoSink.h"
#include "compiler/ParseHelper.h"
namespace {
bool IsLoopIndex(const TIntermSymbol* symbol, const TLoopStack& stack) {
for (TLoopStack::const_iterator i = stack.begin(); i != stack.end(); ++i) {
if (i->index.id == symbol->getId())
return true;
}
return false;
}
// Traverses a node to check if it represents a constant index expression.
// Definition:
// constant-index-expressions are a superset of constant-expressions.
// Constant-index-expressions can include loop indices as defined in
// GLSL ES 1.0 spec, Appendix A, section 4.
// The following are constant-index-expressions:
// - Constant expressions
// - Loop indices as defined in section 4
// - Expressions composed of both of the above
class ValidateConstIndexExpr : public TIntermTraverser {
public:
ValidateConstIndexExpr(const TLoopStack& stack)
: mValid(true), mLoopStack(stack) {}
// Returns true if the parsed node represents a constant index expression.
bool isValid() const { return mValid; }
virtual void visitSymbol(TIntermSymbol* symbol) {
// Only constants and loop indices are allowed in a
// constant index expression.
if (mValid) {
mValid = (symbol->getQualifier() == EvqConst) ||
IsLoopIndex(symbol, mLoopStack);
}
}
virtual void visitConstantUnion(TIntermConstantUnion*) {}
virtual bool visitBinary(Visit, TIntermBinary*) { return true; }
virtual bool visitUnary(Visit, TIntermUnary*) { return true; }
virtual bool visitSelection(Visit, TIntermSelection*) { return true; }
virtual bool visitAggregate(Visit, TIntermAggregate*) { return true; }
virtual bool visitLoop(Visit, TIntermLoop*) { return true; }
virtual bool visitBranch(Visit, TIntermBranch*) { return true; }
private:
bool mValid;
const TLoopStack& mLoopStack;
};
} // namespace
ValidateLimitations::ValidateLimitations(ShShaderType shaderType,
TInfoSinkBase& sink)
: mShaderType(shaderType),
mSink(sink),
mNumErrors(0)
{
}
void ValidateLimitations::visitSymbol(TIntermSymbol*)
{
}
void ValidateLimitations::visitConstantUnion(TIntermConstantUnion*)
{
}
bool ValidateLimitations::visitBinary(Visit, TIntermBinary* node)
{
// Check if loop index is modified in the loop body.
validateOperation(node, node->getLeft());
// Check indexing.
switch (node->getOp()) {
case EOpIndexDirect:
case EOpIndexIndirect:
validateIndexing(node);
break;
default: break;
}
return true;
}
bool ValidateLimitations::visitUnary(Visit, TIntermUnary* node)
{
// Check if loop index is modified in the loop body.
validateOperation(node, node->getOperand());
return true;
}
bool ValidateLimitations::visitSelection(Visit, TIntermSelection*)
{
return true;
}
bool ValidateLimitations::visitAggregate(Visit, TIntermAggregate* node)
{
switch (node->getOp()) {
case EOpFunctionCall:
validateFunctionCall(node);
break;
default:
break;
}
return true;
}
bool ValidateLimitations::visitLoop(Visit, TIntermLoop* node)
{
if (!validateLoopType(node))
return false;
TLoopInfo info;
memset(&info, 0, sizeof(TLoopInfo));
if (!validateForLoopHeader(node, &info))
return false;
TIntermNode* body = node->getBody();
if (body != NULL) {
mLoopStack.push_back(info);
body->traverse(this);
mLoopStack.pop_back();
}
// The loop is fully processed - no need to visit children.
return false;
}
bool ValidateLimitations::visitBranch(Visit, TIntermBranch*)
{
return true;
}
void ValidateLimitations::error(TSourceLoc loc,
const char *reason, const char* token)
{
mSink.prefix(EPrefixError);
mSink.location(loc);
mSink << "'" << token << "' : " << reason << "\n";
++mNumErrors;
}
bool ValidateLimitations::withinLoopBody() const
{
return !mLoopStack.empty();
}
bool ValidateLimitations::isLoopIndex(const TIntermSymbol* symbol) const
{
return IsLoopIndex(symbol, mLoopStack);
}
bool ValidateLimitations::validateLoopType(TIntermLoop* node) {
TLoopType type = node->getType();
if (type == ELoopFor)
return true;
// Reject while and do-while loops.
error(node->getLine(),
"This type of loop is not allowed",
type == ELoopWhile ? "while" : "do");
return false;
}
bool ValidateLimitations::validateForLoopHeader(TIntermLoop* node,
TLoopInfo* info)
{
ASSERT(node->getType() == ELoopFor);
//
// The for statement has the form:
// for ( init-declaration ; condition ; expression ) statement
//
if (!validateForLoopInit(node, info))
return false;
if (!validateForLoopCond(node, info))
return false;
if (!validateForLoopExpr(node, info))
return false;
return true;
}
bool ValidateLimitations::validateForLoopInit(TIntermLoop* node,
TLoopInfo* info)
{
TIntermNode* init = node->getInit();
if (init == NULL) {
error(node->getLine(), "Missing init declaration", "for");
return false;
}
//
// init-declaration has the form:
// type-specifier identifier = constant-expression
//
TIntermAggregate* decl = init->getAsAggregate();
if ((decl == NULL) || (decl->getOp() != EOpDeclaration)) {
error(init->getLine(), "Invalid init declaration", "for");
return false;
}
// To keep things simple do not allow declaration list.
TIntermSequence& declSeq = decl->getSequence();
if (declSeq.size() != 1) {
error(decl->getLine(), "Invalid init declaration", "for");
return false;
}
TIntermBinary* declInit = declSeq[0]->getAsBinaryNode();
if ((declInit == NULL) || (declInit->getOp() != EOpInitialize)) {
error(decl->getLine(), "Invalid init declaration", "for");
return false;
}
TIntermSymbol* symbol = declInit->getLeft()->getAsSymbolNode();
if (symbol == NULL) {
error(declInit->getLine(), "Invalid init declaration", "for");
return false;
}
// The loop index has type int or float.
TBasicType type = symbol->getBasicType();
if ((type != EbtInt) && (type != EbtFloat)) {
error(symbol->getLine(),
"Invalid type for loop index", getBasicString(type));
return false;
}
// The loop index is initialized with constant expression.
if (!isConstExpr(declInit->getRight())) {
error(declInit->getLine(),
"Loop index cannot be initialized with non-constant expression",
symbol->getSymbol().c_str());
return false;
}
info->index.id = symbol->getId();
return true;
}
bool ValidateLimitations::validateForLoopCond(TIntermLoop* node,
TLoopInfo* info)
{
TIntermNode* cond = node->getCondition();
if (cond == NULL) {
error(node->getLine(), "Missing condition", "for");
return false;
}
//
// condition has the form:
// loop_index relational_operator constant_expression
//
TIntermBinary* binOp = cond->getAsBinaryNode();
if (binOp == NULL) {
error(node->getLine(), "Invalid condition", "for");
return false;
}
// Loop index should be to the left of relational operator.
TIntermSymbol* symbol = binOp->getLeft()->getAsSymbolNode();
if (symbol == NULL) {
error(binOp->getLine(), "Invalid condition", "for");
return false;
}
if (symbol->getId() != info->index.id) {
error(symbol->getLine(),
"Expected loop index", symbol->getSymbol().c_str());
return false;
}
// Relational operator is one of: > >= < <= == or !=.
switch (binOp->getOp()) {
case EOpEqual:
case EOpNotEqual:
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
break;
default:
error(binOp->getLine(),
"Invalid relational operator",
getOperatorString(binOp->getOp()));
break;
}
// Loop index must be compared with a constant.
if (!isConstExpr(binOp->getRight())) {
error(binOp->getLine(),
"Loop index cannot be compared with non-constant expression",
symbol->getSymbol().c_str());
return false;
}
return true;
}
bool ValidateLimitations::validateForLoopExpr(TIntermLoop* node,
TLoopInfo* info)
{
TIntermNode* expr = node->getExpression();
if (expr == NULL) {
error(node->getLine(), "Missing expression", "for");
return false;
}
// for expression has one of the following forms:
// loop_index++
// loop_index--
// loop_index += constant_expression
// loop_index -= constant_expression
// ++loop_index
// --loop_index
// The last two forms are not specified in the spec, but I am assuming
// its an oversight.
TIntermUnary* unOp = expr->getAsUnaryNode();
TIntermBinary* binOp = unOp ? NULL : expr->getAsBinaryNode();
TOperator op = EOpNull;
TIntermSymbol* symbol = NULL;
if (unOp != NULL) {
op = unOp->getOp();
symbol = unOp->getOperand()->getAsSymbolNode();
} else if (binOp != NULL) {
op = binOp->getOp();
symbol = binOp->getLeft()->getAsSymbolNode();
}
// The operand must be loop index.
if (symbol == NULL) {
error(expr->getLine(), "Invalid expression", "for");
return false;
}
if (symbol->getId() != info->index.id) {
error(symbol->getLine(),
"Expected loop index", symbol->getSymbol().c_str());
return false;
}
// The operator is one of: ++ -- += -=.
switch (op) {
case EOpPostIncrement:
case EOpPostDecrement:
case EOpPreIncrement:
case EOpPreDecrement:
ASSERT((unOp != NULL) && (binOp == NULL));
break;
case EOpAddAssign:
case EOpSubAssign:
ASSERT((unOp == NULL) && (binOp != NULL));
break;
default:
error(expr->getLine(), "Invalid operator", getOperatorString(op));
return false;
}
// Loop index must be incremented/decremented with a constant.
if (binOp != NULL) {
if (!isConstExpr(binOp->getRight())) {
error(binOp->getLine(),
"Loop index cannot be modified by non-constant expression",
symbol->getSymbol().c_str());
return false;
}
}
return true;
}
bool ValidateLimitations::validateFunctionCall(TIntermAggregate* node)
{
ASSERT(node->getOp() == EOpFunctionCall);
// If not within loop body, there is nothing to check.
if (!withinLoopBody())
return true;
// List of param indices for which loop indices are used as argument.
typedef std::vector<int> ParamIndex;
ParamIndex pIndex;
TIntermSequence& params = node->getSequence();
for (TIntermSequence::size_type i = 0; i < params.size(); ++i) {
TIntermSymbol* symbol = params[i]->getAsSymbolNode();
if (symbol && isLoopIndex(symbol))
pIndex.push_back(i);
}
// If none of the loop indices are used as arguments,
// there is nothing to check.
if (pIndex.empty())
return true;
bool valid = true;
TSymbolTable& symbolTable = GlobalParseContext->symbolTable;
TSymbol* symbol = symbolTable.find(node->getName());
ASSERT(symbol && symbol->isFunction());
TFunction* function = static_cast<TFunction*>(symbol);
for (ParamIndex::const_iterator i = pIndex.begin();
i != pIndex.end(); ++i) {
const TParameter& param = function->getParam(*i);
TQualifier qual = param.type->getQualifier();
if ((qual == EvqOut) || (qual == EvqInOut)) {
error(params[*i]->getLine(),
"Loop index cannot be used as argument to a function out or inout parameter",
params[*i]->getAsSymbolNode()->getSymbol().c_str());
valid = false;
}
}
return valid;
}
bool ValidateLimitations::validateOperation(TIntermOperator* node,
TIntermNode* operand) {
// Check if loop index is modified in the loop body.
if (!withinLoopBody() || !node->modifiesState())
return true;
const TIntermSymbol* symbol = operand->getAsSymbolNode();
if (symbol && isLoopIndex(symbol)) {
error(node->getLine(),
"Loop index cannot be statically assigned to within the body of the loop",
symbol->getSymbol().c_str());
}
return true;
}
bool ValidateLimitations::isConstExpr(TIntermNode* node)
{
ASSERT(node != NULL);
return node->getAsConstantUnion() != NULL;
}
bool ValidateLimitations::isConstIndexExpr(TIntermNode* node)
{
ASSERT(node != NULL);
ValidateConstIndexExpr validate(mLoopStack);
node->traverse(&validate);
return validate.isValid();
}
bool ValidateLimitations::validateIndexing(TIntermBinary* node)
{
ASSERT((node->getOp() == EOpIndexDirect) ||
(node->getOp() == EOpIndexIndirect));
bool valid = true;
TIntermTyped* index = node->getRight();
// The index expression must have integral type.
if (!index->isScalar() || (index->getBasicType() != EbtInt)) {
error(index->getLine(),
"Index expression must have integral type",
index->getCompleteString().c_str());
valid = false;
}
// The index expession must be a constant-index-expression unless
// the operand is a uniform in a vertex shader.
TIntermTyped* operand = node->getLeft();
bool skip = (mShaderType == SH_VERTEX_SHADER) &&
(operand->getQualifier() == EvqUniform);
if (!skip && !isConstIndexExpr(index)) {
error(index->getLine(), "Index expression must be constant", "[]");
valid = false;
}
return valid;
}

View File

@@ -0,0 +1,62 @@
//
// Copyright (c) 2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "GLSLANG/ShaderLang.h"
#include "compiler/intermediate.h"
class TInfoSinkBase;
struct TLoopInfo {
struct TIndex {
int id; // symbol id.
} index;
};
typedef TVector<TLoopInfo> TLoopStack;
// Traverses intermediate tree to ensure that the shader does not exceed the
// minimum functionality mandated in GLSL 1.0 spec, Appendix A.
class ValidateLimitations : public TIntermTraverser {
public:
ValidateLimitations(ShShaderType shaderType, TInfoSinkBase& sink);
int numErrors() const { return mNumErrors; }
virtual void visitSymbol(TIntermSymbol*);
virtual void visitConstantUnion(TIntermConstantUnion*);
virtual bool visitBinary(Visit, TIntermBinary*);
virtual bool visitUnary(Visit, TIntermUnary*);
virtual bool visitSelection(Visit, TIntermSelection*);
virtual bool visitAggregate(Visit, TIntermAggregate*);
virtual bool visitLoop(Visit, TIntermLoop*);
virtual bool visitBranch(Visit, TIntermBranch*);
private:
void error(TSourceLoc loc, const char *reason, const char* token);
bool withinLoopBody() const;
bool isLoopIndex(const TIntermSymbol* symbol) const;
bool validateLoopType(TIntermLoop* node);
bool validateForLoopHeader(TIntermLoop* node, TLoopInfo* info);
bool validateForLoopInit(TIntermLoop* node, TLoopInfo* info);
bool validateForLoopCond(TIntermLoop* node, TLoopInfo* info);
bool validateForLoopExpr(TIntermLoop* node, TLoopInfo* info);
// Returns true if none of the loop indices is used as the argument to
// the given function out or inout parameter.
bool validateFunctionCall(TIntermAggregate* node);
bool validateOperation(TIntermOperator* node, TIntermNode* operand);
// Returns true if indexing does not exceed the minimum functionality
// mandated in GLSL 1.0 spec, Appendix A, Section 5.
bool isConstExpr(TIntermNode* node);
bool isConstIndexExpr(TIntermNode* node);
bool validateIndexing(TIntermBinary* node);
ShShaderType mShaderType;
TInfoSinkBase& mSink;
int mNumErrors;
TLoopStack mLoopStack;
};

View File

@@ -184,6 +184,8 @@ enum TOperator {
EOpDivAssign,
};
extern const char* getOperatorString(TOperator op);
class TIntermTraverser;
class TIntermAggregate;
class TIntermBinary;