C# code samples for Matrices and transforms

This commit is contained in:
Kelly thomas
2018-04-06 17:48:14 +08:00
parent 885e911696
commit 7e255dbbb1

View File

@@ -77,10 +77,15 @@ Well, let's take the point from top tip of the ship as reference:
And let's apply the following operation to it (and to all the points in
the ship too, but we'll track the top tip as our reference point):
::
.. tabs::
.. code-tab:: gdscript GDScript
var new_pos = pos - origin
.. code-tab:: csharp
var newPosition = pos - origin;
Doing this to the selected point will move it back to the center:
.. image:: img/tutomat8.png
@@ -89,10 +94,15 @@ This was expected, but then let's do something more interesting. Use the
dot product of X and the point, and add it to the dot product of Y and
the point:
::
.. tabs::
.. code-tab:: gdscript GDScript
var final_pos = Vector2(x.dot(new_pos), y.dot(new_pos))
.. code-tab:: csharp
var finalPosition = new Vector2(x.Dot(newPosition), y.Dot(newPosition));
Then what we have is.. wait a minute, it's the ship in its design
position!
@@ -151,13 +161,20 @@ it's used for 2D. The "X" axis is the element 0, "Y" axis is the element 1 and
"Origin" is element 2. It's not divided in basis/origin for convenience, due to
its simplicity.
::
.. tabs::
.. code-tab:: gdscript GDScript
var m = Transform2D()
var x = m[0] # 'X'
var y = m[1] # 'Y'
var o = m[2] # 'Origin'
.. code-tab:: csharp
var m = new Transform2D();
Vector2 x = m[0]; // 'X'
Vector2 y = m[1]; // 'Y'
Vector2 o = m[2]; // 'Origin'
Most operations will be explained with this datatype (Transform2D), but the
same logic applies to 3D.
@@ -186,11 +203,17 @@ Rotation
Rotating Transform2D is done by using the "rotated" function:
::
.. tabs::
.. code-tab:: gdscript GDScript
var m = Transform2D()
m = m.rotated(PI/2) # rotate 90°
.. code-tab:: csharp
var m = new Transform2D();
m = m.Rotated(Mathf.PI / 2); // rotate 90°
.. image:: img/tutomat12.png
Translation
@@ -199,12 +222,20 @@ Translation
There are two ways to translate a Transform2D, the first one is just moving
the origin:
::
.. tabs::
.. code-tab:: gdscript GDScript
# Move 2 units to the right
var m = Transform2D()
m = m.rotated(PI/2) # rotate 90°
m[2]+=Vector2(2,0)
m[2] += Vector2(2,0)
.. code-tab:: csharp
// Move 2 units to the right
var m = new Transform2D();
m = m.Rotated(Mathf.PI / 2); // rotate 90°
m[2] += new Vector2(2, 0);
.. image:: img/tutomat13.png
@@ -215,20 +246,33 @@ matrix (towards where the *basis* is oriented), there is the
:ref:`Transform2D.translated() <class_Transform2D_translated>`
method:
::
.. tabs::
.. code-tab:: gdscript GDScript
# Move 2 units towards where the basis is oriented
var m = Transform2D()
m = m.rotated(PI/2) # rotate 90°
m = m.translated( Vector2(2,0) )
.. code-tab:: csharp
// Move 2 units towards where the basis is oriented
var m = new Transform2D();
m = m.Rotated(Mathf.PI / 2); // rotate 90°
m = m.Translated(new Vector2(2, 0));
.. image:: img/tutomat14.png
You could also transform the global coordinates to local coordinates manually:
::
.. tabs::
.. code-tab:: gdscript GDScript
var local_pos = this_transform.xform_inv(point)
var local_pos = m.xform_inv(point)
.. code-tab:: csharp
var localPosition = m.XformInv(point);
But even better, there are helper functions for this as you can read in the next sections.
@@ -247,12 +291,19 @@ A matrix can be scaled too. Scaling will multiply the basis vectors by a
vector (X vector by x component of the scale, Y vector by y component of
the scale). It will leave the origin alone:
::
.. tabs::
.. code-tab:: gdscript GDScript
# Make the basis twice its size.
var m = Transform2D()
m = m.scaled( Vector2(2,2) )
.. code-tab:: csharp
// Make the basis twice its size.
var m = new Transform2D();
m = m.Scaled(new Vector2(2, 2));
.. image:: img/tutomat15.png
These kind of operations in matrices are accumulative. It means every
@@ -273,21 +324,25 @@ Transform is the act of switching between coordinate systems. To convert
a position (either 2D or 3D) from "designer" coordinate system to the
OCS, the "xform" method is used.
::
.. tabs::
.. code-tab:: gdscript GDScript
var new_pos = m.xform(pos)
.. code-tab:: csharp
var newPosition = m.Xform(position);
And only for basis (no translation):
::
.. tabs::
.. code-tab:: gdscript GDScript
var new_pos = m.basis_xform(pos)
Post - multiplying is also valid:
.. code-tab:: csharp
::
var new_pos = m * pos
var newPosition = m.BasisXform(position);
Inverse transform
-----------------
@@ -295,21 +350,25 @@ Inverse transform
To do the opposite operation (what we did up there with the rocket), the
"xform_inv" method is used:
::
.. tabs::
.. code-tab:: gdscript GDScript
var new_pos = m.xform_inv(pos)
.. code-tab:: csharp
var newPosition = m.XformInv(position);
Only for Basis:
::
.. tabs::
.. code-tab:: gdscript GDScript
var new_pos = m.basis_xform_inv(pos)
Or pre-multiplication:
.. code-tab:: csharp
::
var new_pos = pos * m
var newPosition = m.BasisXformInv(position);
Orthonormal matrices
--------------------
@@ -324,11 +383,17 @@ matrices. For this, these cases an affine inverse must be computed.
The transform, or inverse transform of an identity matrix will return
the position unchanged:
::
.. tabs::
.. code-tab:: gdscript GDScript
# Does nothing, pos is unchanged
pos = Transform2D().xform(pos)
.. code-tab:: csharp
// Does nothing, position is unchanged
position = new Transform2D().Xform(position);
Affine inverse
--------------
@@ -337,22 +402,38 @@ another matrix, no matter if the matrix has scale or the axis vectors
are not orthogonal. The affine inverse is calculated with the
affine_inverse() method:
::
.. tabs::
.. code-tab:: gdscript GDScript
var mi = m.affine_inverse()
var pos = m.xform(pos)
pos = m.xform(pos)
pos = mi.xform(pos)
# pos is unchanged
.. code-tab:: csharp
var mi = m.AffineInverse();
position = m.Xform(position);
position = mi.Xform(position);
// position is unchanged
If the matrix is orthonormal, then:
::
.. tabs::
.. code-tab:: gdscript GDScript
# if m is orthonormal, then
pos = mi.xform(pos)
# is the same is
pos = m.xform_inv(pos)
.. code-tab:: csharp
// if m is orthonormal, then
position = mi.Xform(position);
// is the same is
position = m.XformInv(position);
Matrix multiplication
---------------------
@@ -364,31 +445,54 @@ order.
Example:
::
.. tabs::
.. code-tab:: gdscript GDScript
var m = more_transforms * some_transforms
.. code-tab:: csharp
var m = moreTransforms * someTransforms;
To make it a little clearer, this:
::
.. tabs::
.. code-tab:: gdscript GDScript
pos = transform1.xform(pos)
pos = transform2.xform(pos)
.. code-tab:: csharp
position = transform1.Xform(position);
position = transform2.Xform(position);
Is the same as:
::
.. tabs::
.. code-tab:: gdscript GDScript
# note the inverse order
pos = (transform2 * transform1).xform(pos)
.. code-tab:: csharp
// note the inverse order
position = (transform2 * transform1).Xform(position);
However, this is not the same:
::
.. tabs::
.. code-tab:: gdscript GDScript
# yields a different results
pos = (transform1 * transform2).xform(pos)
.. code-tab:: csharp
// yields a different results
position = (transform1 * transform2).Xform(position);
Because in matrix math, A * B is not the same as B * A.
Multiplication by inverse
@@ -396,51 +500,85 @@ Multiplication by inverse
Multiplying a matrix by its inverse, results in identity:
::
.. tabs::
.. code-tab:: gdscript GDScript
# No matter what A is, B will be identity
B = A.affine_inverse() * A
var B = A.affine_inverse() * A
.. code-tab:: csharp
// No matter what A is, B will be identity
var B = A.AffineInverse() * A;
Multiplication by identity
--------------------------
Multiplying a matrix by identity, will result in the unchanged matrix:
::
.. tabs::
.. code-tab:: gdscript GDScript
# B will be equal to A
B = A * Transform2D()
.. code-tab:: csharp
// B will be equal to A
var B = A * new Transform2D();
Matrix tips
-----------
When using a transform hierarchy, remember that matrix multiplication is
reversed! To obtain the global transform for a hierarchy, do:
::
.. tabs::
.. code-tab:: gdscript GDScript
var global_xform = parent_matrix * child_matrix
.. code-tab:: csharp
var globalTransform = parentMatrix * childMatrix;
For 3 levels:
::
.. tabs::
.. code-tab:: gdscript GDScript
var global_xform = gradparent_matrix * parent_matrix * child_matrix
.. code-tab:: csharp
var globalTransform = grandparentMatrix * parentMatrix * childMatrix;
To make a matrix relative to the parent, use the affine inverse (or
regular inverse for orthonormal matrices).
::
.. tabs::
.. code-tab:: gdscript GDScript
# transform B from a global matrix to one local to A
var B_local_to_A = A.affine_inverse() * B
.. code-tab:: csharp
// transform B from a global matrix to one local to A
var bLocalToA = A.AffineInverse() * B;
Revert it just like the example above:
::
.. tabs::
.. code-tab:: gdscript GDScript
# transform back local B to global B
var B = A * B_local_to_A
B = A * B_local_to_A
.. code-tab:: csharp
// transform back local B to global B
B = A * bLocalToA;
OK, hopefully this should be enough! Let's complete the tutorial by
moving to 3D matrices.
@@ -458,22 +596,38 @@ Godot has a special type for a 3x3 matrix, named :ref:`Basis <class_basis>`.
It can be used to represent a 3D rotation and scale. Sub vectors can be
accessed as:
::
.. tabs::
.. code-tab:: gdscript GDScript
var m = Basis()
var x = m[0] # Vector3
var y = m[1] # Vector3
var z = m[2] # Vector3
.. code-tab:: csharp
var m = new Basis();
Vector3 x = m[0];
Vector3 y = m[1];
Vector3 z = m[2];
Or, alternatively as:
::
.. tabs::
.. code-tab:: gdscript GDScript
var m = Basis()
var x = m.x # Vector3
var y = m.y # Vector3
var z = m.z # Vector3
.. code-tab:: csharp
var m = new Basis();
Vector3 x = m.x;
Vector3 y = m.y;
Vector3 z = m.z;
Basis is also initialized to Identity by default:
.. image:: img/tutomat17.png
@@ -488,12 +642,19 @@ same), because rotation is an implicit 2D operation. To rotate in 3D, an
The axis for the rotation must be a *normal vector*. As in, a vector
that can point to any direction, but length must be one (1.0).
::
.. tabs::
.. code-tab:: gdscript GDScript
#rotate in Y axis
var m3 = Basis()
m3 = m3.rotated( Vector3(0,1,0), PI/2 )
.. code-tab:: csharp
// rotate in Y axis
var m3 = new Basis();
m3 = m3.Rotated(new Vector3(0, 1, 0), Mathf.PI / 2);
Transform
---------
@@ -509,9 +670,17 @@ separately.
An example:
::
.. tabs::
.. code-tab:: gdscript GDScript
var t = Transform()
pos = t.xform(pos) # transform 3D position
pos = t.basis.xform(pos) # (only rotate)
pos = t.origin + pos # (only translate)
.. code-tab:: csharp
var t = new Transform();
position = t.Xform(position); // transform 3D position
position = t.basis.Xform(position); // (only rotate)
position = t.origin + position; // (only translate)