Files
godot-cpp/include/godot_cpp/variant/vector3.hpp
Rémi Verschelde 7e3321d1b2 Use forward declares for vector math types
Adds operators to convert from int vector types to float vector types
as done in the upstream engine implementations.
2022-02-20 12:04:08 +01:00

440 lines
12 KiB
C++

/*************************************************************************/
/* vector3.hpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef GODOT_VECTOR3_HPP
#define GODOT_VECTOR3_HPP
#include <godot_cpp/core/math.hpp>
namespace godot {
class Basis;
class String;
class Vector3i;
class Vector3 {
_FORCE_INLINE_ GDNativeTypePtr _native_ptr() const { return (void *)this; }
friend class Variant;
public:
enum Axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
};
union {
struct {
real_t x;
real_t y;
real_t z;
};
real_t coord[3] = { 0 };
};
inline const real_t &operator[](int p_axis) const {
return coord[p_axis];
}
inline real_t &operator[](int p_axis) {
return coord[p_axis];
}
void set_axis(int p_axis, real_t p_value);
real_t get_axis(int p_axis) const;
int min_axis() const;
int max_axis() const;
inline real_t length() const;
inline real_t length_squared() const;
inline void normalize();
inline Vector3 normalized() const;
inline bool is_normalized() const;
inline Vector3 inverse() const;
inline void zero();
void snap(Vector3 p_val);
Vector3 snapped(Vector3 p_val) const;
void rotate(const Vector3 &p_axis, real_t p_phi);
Vector3 rotated(const Vector3 &p_axis, real_t p_phi) const;
/* Static Methods between 2 vector3s */
inline Vector3 lerp(const Vector3 &p_to, real_t p_weight) const;
inline Vector3 slerp(const Vector3 &p_to, real_t p_weight) const;
Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const;
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
inline Vector3 cross(const Vector3 &p_b) const;
inline real_t dot(const Vector3 &p_b) const;
Basis outer(const Vector3 &p_b) const;
Basis to_diagonal_matrix() const;
inline Vector3 abs() const;
inline Vector3 floor() const;
inline Vector3 sign() const;
inline Vector3 ceil() const;
inline Vector3 round() const;
inline real_t distance_to(const Vector3 &p_to) const;
inline real_t distance_squared_to(const Vector3 &p_to) const;
inline Vector3 posmod(const real_t p_mod) const;
inline Vector3 posmodv(const Vector3 &p_modv) const;
inline Vector3 project(const Vector3 &p_to) const;
inline real_t angle_to(const Vector3 &p_to) const;
inline Vector3 direction_to(const Vector3 &p_to) const;
inline Vector3 slide(const Vector3 &p_normal) const;
inline Vector3 bounce(const Vector3 &p_normal) const;
inline Vector3 reflect(const Vector3 &p_normal) const;
bool is_equal_approx(const Vector3 &p_v) const;
/* Operators */
inline Vector3 &operator+=(const Vector3 &p_v);
inline Vector3 operator+(const Vector3 &p_v) const;
inline Vector3 &operator-=(const Vector3 &p_v);
inline Vector3 operator-(const Vector3 &p_v) const;
inline Vector3 &operator*=(const Vector3 &p_v);
inline Vector3 operator*(const Vector3 &p_v) const;
inline Vector3 &operator/=(const Vector3 &p_v);
inline Vector3 operator/(const Vector3 &p_v) const;
inline Vector3 &operator*=(real_t p_scalar);
inline Vector3 operator*(real_t p_scalar) const;
inline Vector3 &operator/=(real_t p_scalar);
inline Vector3 operator/(real_t p_scalar) const;
inline Vector3 operator-() const;
inline bool operator==(const Vector3 &p_v) const;
inline bool operator!=(const Vector3 &p_v) const;
inline bool operator<(const Vector3 &p_v) const;
inline bool operator<=(const Vector3 &p_v) const;
inline bool operator>(const Vector3 &p_v) const;
inline bool operator>=(const Vector3 &p_v) const;
operator String() const;
operator Vector3i() const;
inline Vector3() {}
inline Vector3(real_t p_x, real_t p_y, real_t p_z) {
x = p_x;
y = p_y;
z = p_z;
}
};
Vector3 Vector3::cross(const Vector3 &p_b) const {
Vector3 ret(
(y * p_b.z) - (z * p_b.y),
(z * p_b.x) - (x * p_b.z),
(x * p_b.y) - (y * p_b.x));
return ret;
}
real_t Vector3::dot(const Vector3 &p_b) const {
return x * p_b.x + y * p_b.y + z * p_b.z;
}
Vector3 Vector3::abs() const {
return Vector3(Math::abs(x), Math::abs(y), Math::abs(z));
}
Vector3 Vector3::sign() const {
return Vector3(Math::sign(x), Math::sign(y), Math::sign(z));
}
Vector3 Vector3::floor() const {
return Vector3(Math::floor(x), Math::floor(y), Math::floor(z));
}
Vector3 Vector3::ceil() const {
return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z));
}
Vector3 Vector3::round() const {
return Vector3(Math::round(x), Math::round(y), Math::round(z));
}
Vector3 Vector3::lerp(const Vector3 &p_to, real_t p_weight) const {
return Vector3(
x + (p_weight * (p_to.x - x)),
y + (p_weight * (p_to.y - y)),
z + (p_weight * (p_to.z - z)));
}
Vector3 Vector3::slerp(const Vector3 &p_to, real_t p_weight) const {
real_t theta = angle_to(p_to);
return rotated(cross(p_to).normalized(), theta * p_weight);
}
real_t Vector3::distance_to(const Vector3 &p_to) const {
return (p_to - *this).length();
}
real_t Vector3::distance_squared_to(const Vector3 &p_to) const {
return (p_to - *this).length_squared();
}
Vector3 Vector3::posmod(const real_t p_mod) const {
return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod));
}
Vector3 Vector3::posmodv(const Vector3 &p_modv) const {
return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z));
}
Vector3 Vector3::project(const Vector3 &p_to) const {
return p_to * (dot(p_to) / p_to.length_squared());
}
real_t Vector3::angle_to(const Vector3 &p_to) const {
return Math::atan2(cross(p_to).length(), dot(p_to));
}
Vector3 Vector3::direction_to(const Vector3 &p_to) const {
Vector3 ret(p_to.x - x, p_to.y - y, p_to.z - z);
ret.normalize();
return ret;
}
/* Operators */
Vector3 &Vector3::operator+=(const Vector3 &p_v) {
x += p_v.x;
y += p_v.y;
z += p_v.z;
return *this;
}
Vector3 Vector3::operator+(const Vector3 &p_v) const {
return Vector3(x + p_v.x, y + p_v.y, z + p_v.z);
}
Vector3 &Vector3::operator-=(const Vector3 &p_v) {
x -= p_v.x;
y -= p_v.y;
z -= p_v.z;
return *this;
}
Vector3 Vector3::operator-(const Vector3 &p_v) const {
return Vector3(x - p_v.x, y - p_v.y, z - p_v.z);
}
Vector3 &Vector3::operator*=(const Vector3 &p_v) {
x *= p_v.x;
y *= p_v.y;
z *= p_v.z;
return *this;
}
Vector3 Vector3::operator*(const Vector3 &p_v) const {
return Vector3(x * p_v.x, y * p_v.y, z * p_v.z);
}
Vector3 &Vector3::operator/=(const Vector3 &p_v) {
x /= p_v.x;
y /= p_v.y;
z /= p_v.z;
return *this;
}
Vector3 Vector3::operator/(const Vector3 &p_v) const {
return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
}
Vector3 &Vector3::operator*=(real_t p_scalar) {
x *= p_scalar;
y *= p_scalar;
z *= p_scalar;
return *this;
}
inline Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) {
return p_vec * p_scalar;
}
Vector3 Vector3::operator*(real_t p_scalar) const {
return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
}
Vector3 &Vector3::operator/=(real_t p_scalar) {
x /= p_scalar;
y /= p_scalar;
z /= p_scalar;
return *this;
}
Vector3 Vector3::operator/(real_t p_scalar) const {
return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
}
Vector3 Vector3::operator-() const {
return Vector3(-x, -y, -z);
}
bool Vector3::operator==(const Vector3 &p_v) const {
return x == p_v.x && y == p_v.y && z == p_v.z;
}
bool Vector3::operator!=(const Vector3 &p_v) const {
return x != p_v.x || y != p_v.y || z != p_v.z;
}
bool Vector3::operator<(const Vector3 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
return z < p_v.z;
}
return y < p_v.y;
}
return x < p_v.x;
}
bool Vector3::operator>(const Vector3 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
return z > p_v.z;
}
return y > p_v.y;
}
return x > p_v.x;
}
bool Vector3::operator<=(const Vector3 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
return z <= p_v.z;
}
return y < p_v.y;
}
return x < p_v.x;
}
bool Vector3::operator>=(const Vector3 &p_v) const {
if (x == p_v.x) {
if (y == p_v.y) {
return z >= p_v.z;
}
return y > p_v.y;
}
return x > p_v.x;
}
inline Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
return p_a.cross(p_b);
}
inline real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
return p_a.dot(p_b);
}
real_t Vector3::length() const {
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
return Math::sqrt(x2 + y2 + z2);
}
real_t Vector3::length_squared() const {
real_t x2 = x * x;
real_t y2 = y * y;
real_t z2 = z * z;
return x2 + y2 + z2;
}
void Vector3::normalize() {
real_t lengthsq = length_squared();
if (lengthsq == (real_t)0.0) {
x = y = z = (real_t)0.0;
} else {
real_t length = Math::sqrt(lengthsq);
x /= length;
y /= length;
z /= length;
}
}
Vector3 Vector3::normalized() const {
Vector3 v = *this;
v.normalize();
return v;
}
bool Vector3::is_normalized() const {
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
return Math::is_equal_approx(length_squared(), (real_t)1.0, (real_t)UNIT_EPSILON);
}
Vector3 Vector3::inverse() const {
return Vector3((real_t)1.0 / x, (real_t)1.0 / y, (real_t)1.0 / z);
}
void Vector3::zero() {
x = y = z = (real_t)0.0;
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector3 Vector3::slide(const Vector3 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3());
#endif
return *this - p_normal * this->dot(p_normal);
}
Vector3 Vector3::bounce(const Vector3 &p_normal) const {
return -reflect(p_normal);
}
Vector3 Vector3::reflect(const Vector3 &p_normal) const {
#ifdef MATH_CHECKS
ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3());
#endif
return 2.0 * p_normal * this->dot(p_normal) - *this;
}
} // namespace godot
#endif // GODOT_VECTOR3_HPP