mirror of
https://github.com/godotengine/godot-cpp.git
synced 2026-01-06 06:10:06 +03:00
Make Basis look column-major while retaining a row-major representation
Per https://github.com/godotengine/godot/issues/14553: Godot stores Basis in row-major layout for more change for efficiently taking advantage of SIMD instructions, but in scripts Basis looks like and is accessible in a column-major format. This change modifies the C++ binding so that from the script's perspective Basis does look like if it was column-major while retaining a row-major in-memory representation. This is achieved using a set of helper template classes which allow accessing individual columns whose components are non-continues in memory as if it was a Vector3 type. This ensures script interface compatibility without needing to transpose the Basis every time it is passed over the script-engine boundary. Also made most of the Vector2 and Vector3 class interfaces inlined in the process for increased performance. While unrelated (but didn't want to file a separate PR for it), this change adds the necessary flags to have debug symbol information under MSVC. Fixes #241.
This commit is contained in:
@@ -4,118 +4,10 @@
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include "Basis.hpp"
|
||||
|
||||
namespace godot {
|
||||
|
||||
Vector3::Vector3(real_t x, real_t y, real_t z) {
|
||||
this->x = x;
|
||||
this->y = y;
|
||||
this->z = z;
|
||||
}
|
||||
|
||||
Vector3::Vector3() {
|
||||
this->x = 0;
|
||||
this->y = 0;
|
||||
this->z = 0;
|
||||
}
|
||||
|
||||
const real_t &Vector3::operator[](int p_axis) const {
|
||||
return coord[p_axis];
|
||||
}
|
||||
|
||||
real_t &Vector3::operator[](int p_axis) {
|
||||
return coord[p_axis];
|
||||
}
|
||||
|
||||
Vector3 &Vector3::operator+=(const Vector3 &p_v) {
|
||||
x += p_v.x;
|
||||
y += p_v.y;
|
||||
z += p_v.z;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Vector3 Vector3::operator+(const Vector3 &p_v) const {
|
||||
Vector3 v = *this;
|
||||
v += p_v;
|
||||
return v;
|
||||
}
|
||||
|
||||
Vector3 &Vector3::operator-=(const Vector3 &p_v) {
|
||||
x -= p_v.x;
|
||||
y -= p_v.y;
|
||||
z -= p_v.z;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Vector3 Vector3::operator-(const Vector3 &p_v) const {
|
||||
Vector3 v = *this;
|
||||
v -= p_v;
|
||||
return v;
|
||||
}
|
||||
|
||||
Vector3 &Vector3::operator*=(const Vector3 &p_v) {
|
||||
x *= p_v.x;
|
||||
y *= p_v.y;
|
||||
z *= p_v.z;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Vector3 Vector3::operator*(const Vector3 &p_v) const {
|
||||
Vector3 v = *this;
|
||||
v *= p_v;
|
||||
return v;
|
||||
}
|
||||
|
||||
Vector3 &Vector3::operator/=(const Vector3 &p_v) {
|
||||
x /= p_v.x;
|
||||
y /= p_v.y;
|
||||
z /= p_v.z;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Vector3 Vector3::operator/(const Vector3 &p_v) const {
|
||||
Vector3 v = *this;
|
||||
v /= p_v;
|
||||
return v;
|
||||
}
|
||||
|
||||
Vector3 &Vector3::operator*=(real_t p_scalar) {
|
||||
*this *= Vector3(p_scalar, p_scalar, p_scalar);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Vector3 Vector3::operator*(real_t p_scalar) const {
|
||||
Vector3 v = *this;
|
||||
v *= p_scalar;
|
||||
return v;
|
||||
}
|
||||
|
||||
Vector3 &Vector3::operator/=(real_t p_scalar) {
|
||||
*this /= Vector3(p_scalar, p_scalar, p_scalar);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Vector3 Vector3::operator/(real_t p_scalar) const {
|
||||
Vector3 v = *this;
|
||||
v /= p_scalar;
|
||||
return v;
|
||||
}
|
||||
|
||||
Vector3 Vector3::operator-() const {
|
||||
return Vector3(-x, -y, -z);
|
||||
}
|
||||
|
||||
bool Vector3::operator==(const Vector3 &p_v) const {
|
||||
return (x == p_v.x && y == p_v.y && z == p_v.z);
|
||||
}
|
||||
|
||||
bool Vector3::operator!=(const Vector3 &p_v) const {
|
||||
return (x != p_v.x || y != p_v.y || z != p_v.z);
|
||||
}
|
||||
|
||||
bool Vector3::operator<(const Vector3 &p_v) const {
|
||||
if (x == p_v.x) {
|
||||
if (y == p_v.y)
|
||||
@@ -138,30 +30,6 @@ bool Vector3::operator<=(const Vector3 &p_v) const {
|
||||
}
|
||||
}
|
||||
|
||||
Vector3 Vector3::abs() const {
|
||||
return Vector3(::fabs(x), ::fabs(y), ::fabs(z));
|
||||
}
|
||||
|
||||
Vector3 Vector3::ceil() const {
|
||||
return Vector3(::ceil(x), ::ceil(y), ::ceil(z));
|
||||
}
|
||||
|
||||
Vector3 Vector3::cross(const Vector3 &b) const {
|
||||
Vector3 ret(
|
||||
(y * b.z) - (z * b.y),
|
||||
(z * b.x) - (x * b.z),
|
||||
(x * b.y) - (y * b.x));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
Vector3 Vector3::linear_interpolate(const Vector3 &p_b, real_t p_t) const {
|
||||
return Vector3(
|
||||
x + (p_t * (p_b.x - x)),
|
||||
y + (p_t * (p_b.y - y)),
|
||||
z + (p_t * (p_b.z - z)));
|
||||
}
|
||||
|
||||
Vector3 Vector3::cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const {
|
||||
Vector3 p0 = pre_a;
|
||||
Vector3 p1 = *this;
|
||||
@@ -180,54 +48,6 @@ Vector3 Vector3::cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const
|
||||
return out;
|
||||
}
|
||||
|
||||
Vector3 Vector3::bounce(const Vector3 &p_normal) const {
|
||||
return -reflect(p_normal);
|
||||
}
|
||||
|
||||
real_t Vector3::length() const {
|
||||
real_t x2 = x * x;
|
||||
real_t y2 = y * y;
|
||||
real_t z2 = z * z;
|
||||
|
||||
return ::sqrt(x2 + y2 + z2);
|
||||
}
|
||||
|
||||
real_t Vector3::length_squared() const {
|
||||
real_t x2 = x * x;
|
||||
real_t y2 = y * y;
|
||||
real_t z2 = z * z;
|
||||
|
||||
return x2 + y2 + z2;
|
||||
}
|
||||
|
||||
real_t Vector3::distance_squared_to(const Vector3 &b) const {
|
||||
return (b - *this).length_squared();
|
||||
}
|
||||
|
||||
real_t Vector3::distance_to(const Vector3 &b) const {
|
||||
return (b - *this).length();
|
||||
}
|
||||
|
||||
real_t Vector3::dot(const Vector3 &b) const {
|
||||
return x * b.x + y * b.y + z * b.z;
|
||||
}
|
||||
|
||||
real_t Vector3::angle_to(const Vector3 &b) const {
|
||||
return std::atan2(cross(b).length(), dot(b));
|
||||
}
|
||||
|
||||
Vector3 Vector3::floor() const {
|
||||
return Vector3(::floor(x), ::floor(y), ::floor(z));
|
||||
}
|
||||
|
||||
Vector3 Vector3::inverse() const {
|
||||
return Vector3(1.0 / x, 1.0 / y, 1.0 / z);
|
||||
}
|
||||
|
||||
bool Vector3::is_normalized() const {
|
||||
return std::abs(length_squared() - 1.0) < 0.00001;
|
||||
}
|
||||
|
||||
Basis Vector3::outer(const Vector3 &b) const {
|
||||
Vector3 row0(x * b.x, x * b.y, x * b.z);
|
||||
Vector3 row1(y * b.x, y * b.y, y * b.z);
|
||||
@@ -243,41 +63,10 @@ int Vector3::min_axis() const {
|
||||
return x < y ? (x < z ? 0 : 2) : (y < z ? 1 : 2);
|
||||
}
|
||||
|
||||
void Vector3::normalize() {
|
||||
real_t l = length();
|
||||
if (l == 0) {
|
||||
x = y = z = 0;
|
||||
} else {
|
||||
x /= l;
|
||||
y /= l;
|
||||
z /= l;
|
||||
}
|
||||
}
|
||||
|
||||
Vector3 Vector3::normalized() const {
|
||||
Vector3 v = *this;
|
||||
v.normalize();
|
||||
return v;
|
||||
}
|
||||
|
||||
Vector3 Vector3::reflect(const Vector3 &by) const {
|
||||
return by - *this * this->dot(by) * 2.0;
|
||||
}
|
||||
|
||||
Vector3 Vector3::rotated(const Vector3 &axis, const real_t phi) const {
|
||||
Vector3 v = *this;
|
||||
v.rotate(axis, phi);
|
||||
return v;
|
||||
}
|
||||
|
||||
void Vector3::rotate(const Vector3 &p_axis, real_t p_phi) {
|
||||
*this = Basis(p_axis, p_phi).xform(*this);
|
||||
}
|
||||
|
||||
Vector3 Vector3::slide(const Vector3 &by) const {
|
||||
return by - *this * this->dot(by);
|
||||
}
|
||||
|
||||
// this is ugly as well, but hey, I'm a simple man
|
||||
#define _ugly_stepify(val, step) (step != 0 ? ::floor(val / step + 0.5) * step : val)
|
||||
|
||||
@@ -289,12 +78,6 @@ void Vector3::snap(real_t p_val) {
|
||||
|
||||
#undef _ugly_stepify
|
||||
|
||||
Vector3 Vector3::snapped(const float by) {
|
||||
Vector3 v = *this;
|
||||
v.snap(by);
|
||||
return v;
|
||||
}
|
||||
|
||||
Vector3::operator String() const {
|
||||
return String::num(x) + ", " + String::num(y) + ", " + String::num(z);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user