Switch to 64-bit ints.

This commit is contained in:
bruvzg
2024-01-10 15:30:24 +02:00
parent dd62b9685f
commit 59a5a8b104
7 changed files with 253 additions and 170 deletions

View File

@@ -52,6 +52,8 @@ class VMap;
template <class T>
class CharStringT;
SAFE_NUMERIC_TYPE_PUN_GUARANTEES(uint64_t)
// Silence a false positive warning (see GH-52119).
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
@@ -69,52 +71,71 @@ class CowData {
template <class TS>
friend class CharStringT;
public:
typedef int64_t Size;
typedef uint64_t USize;
static constexpr USize MAX_INT = INT64_MAX;
private:
// Function to find the next power of 2 to an integer.
static _FORCE_INLINE_ USize next_po2(USize x) {
if (x == 0) {
return 0;
}
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
if (sizeof(USize) == 8) {
x |= x >> 32;
}
return ++x;
}
static constexpr USize ALLOC_PAD = sizeof(USize) * 2; // For size and atomic refcount.
mutable T *_ptr = nullptr;
// internal helpers
_FORCE_INLINE_ SafeNumeric<uint32_t> *_get_refcount() const {
_FORCE_INLINE_ SafeNumeric<USize> *_get_refcount() const {
if (!_ptr) {
return nullptr;
}
return reinterpret_cast<SafeNumeric<uint32_t> *>(_ptr) - 2;
return reinterpret_cast<SafeNumeric<USize> *>(_ptr) - 2;
}
_FORCE_INLINE_ uint32_t *_get_size() const {
_FORCE_INLINE_ USize *_get_size() const {
if (!_ptr) {
return nullptr;
}
return reinterpret_cast<uint32_t *>(_ptr) - 1;
return reinterpret_cast<USize *>(_ptr) - 1;
}
_FORCE_INLINE_ T *_get_data() const {
if (!_ptr) {
return nullptr;
}
return reinterpret_cast<T *>(_ptr);
_FORCE_INLINE_ USize _get_alloc_size(USize p_elements) const {
return next_po2(p_elements * sizeof(T));
}
_FORCE_INLINE_ size_t _get_alloc_size(size_t p_elements) const {
return next_power_of_2(p_elements * sizeof(T));
}
_FORCE_INLINE_ bool _get_alloc_size_checked(size_t p_elements, size_t *out) const {
_FORCE_INLINE_ bool _get_alloc_size_checked(USize p_elements, USize *out) const {
if (unlikely(p_elements == 0)) {
*out = 0;
return true;
}
#if defined(__GNUC__)
size_t o;
size_t p;
#if defined(__GNUC__) && defined(IS_32_BIT)
USize o;
USize p;
if (__builtin_mul_overflow(p_elements, sizeof(T), &o)) {
*out = 0;
return false;
}
*out = next_power_of_2(o);
if (__builtin_add_overflow(o, static_cast<size_t>(32), &p)) {
*out = next_po2(o);
if (__builtin_add_overflow(o, static_cast<USize>(32), &p)) {
return false; // No longer allocated here.
}
#else
@@ -128,22 +149,22 @@ private:
void _unref(void *p_data);
void _ref(const CowData *p_from);
void _ref(const CowData &p_from);
uint32_t _copy_on_write();
USize _copy_on_write();
public:
void operator=(const CowData<T> &p_from) { _ref(p_from); }
_FORCE_INLINE_ T *ptrw() {
_copy_on_write();
return (T *)_get_data();
return _ptr;
}
_FORCE_INLINE_ const T *ptr() const {
return _get_data();
return _ptr;
}
_FORCE_INLINE_ int size() const {
uint32_t *size = (uint32_t *)_get_size();
_FORCE_INLINE_ Size size() const {
USize *size = (USize *)_get_size();
if (size) {
return *size;
} else {
@@ -154,41 +175,42 @@ public:
_FORCE_INLINE_ void clear() { resize(0); }
_FORCE_INLINE_ bool is_empty() const { return _ptr == nullptr; }
_FORCE_INLINE_ void set(int p_index, const T &p_elem) {
_FORCE_INLINE_ void set(Size p_index, const T &p_elem) {
ERR_FAIL_INDEX(p_index, size());
_copy_on_write();
_get_data()[p_index] = p_elem;
_ptr[p_index] = p_elem;
}
_FORCE_INLINE_ T &get_m(int p_index) {
_FORCE_INLINE_ T &get_m(Size p_index) {
CRASH_BAD_INDEX(p_index, size());
_copy_on_write();
return _get_data()[p_index];
return _ptr[p_index];
}
_FORCE_INLINE_ const T &get(int p_index) const {
_FORCE_INLINE_ const T &get(Size p_index) const {
CRASH_BAD_INDEX(p_index, size());
return _get_data()[p_index];
return _ptr[p_index];
}
Error resize(int p_size);
template <bool p_ensure_zero = false>
Error resize(Size p_size);
_FORCE_INLINE_ void remove_at(int p_index) {
_FORCE_INLINE_ void remove_at(Size p_index) {
ERR_FAIL_INDEX(p_index, size());
T *p = ptrw();
int len = size();
for (int i = p_index; i < len - 1; i++) {
Size len = size();
for (Size i = p_index; i < len - 1; i++) {
p[i] = p[i + 1];
}
resize(len - 1);
}
Error insert(int p_pos, const T &p_val) {
Error insert(Size p_pos, const T &p_val) {
ERR_FAIL_INDEX_V(p_pos, size() + 1, ERR_INVALID_PARAMETER);
resize(size() + 1);
for (int i = (size() - 1); i > p_pos; i--) {
for (Size i = (size() - 1); i > p_pos; i--) {
set(i, get(i - 1));
}
set(p_pos, p_val);
@@ -196,11 +218,13 @@ public:
return OK;
}
int find(const T &p_val, int p_from = 0) const;
Size find(const T &p_val, Size p_from = 0) const;
Size rfind(const T &p_val, Size p_from = -1) const;
Size count(const T &p_val) const;
_FORCE_INLINE_ CowData() {}
_FORCE_INLINE_ ~CowData();
_FORCE_INLINE_ CowData(CowData<T> &p_from) { _ref(p_from); }
_FORCE_INLINE_ CowData(CowData<T> &p_from) { _ref(p_from); };
};
template <class T>
@@ -209,44 +233,45 @@ void CowData<T>::_unref(void *p_data) {
return;
}
SafeNumeric<uint32_t> *refc = _get_refcount();
SafeNumeric<USize> *refc = _get_refcount();
if (refc->decrement() > 0) {
return; // still in use
}
// clean up
if (!std::is_trivially_destructible<T>::value) {
uint32_t *count = _get_size();
USize *count = _get_size();
T *data = (T *)(count + 1);
for (uint32_t i = 0; i < *count; ++i) {
for (USize i = 0; i < *count; ++i) {
// call destructors
data[i].~T();
}
}
// free mem
Memory::free_static((uint8_t *)p_data, true);
Memory::free_static(((uint8_t *)p_data) - ALLOC_PAD, false);
}
template <class T>
uint32_t CowData<T>::_copy_on_write() {
typename CowData<T>::USize CowData<T>::_copy_on_write() {
if (!_ptr) {
return 0;
}
SafeNumeric<uint32_t> *refc = _get_refcount();
SafeNumeric<USize> *refc = _get_refcount();
uint32_t rc = refc->get();
USize rc = refc->get();
if (unlikely(rc > 1)) {
/* in use by more than me */
uint32_t current_size = *_get_size();
USize current_size = *_get_size();
uint32_t *mem_new = (uint32_t *)Memory::alloc_static(_get_alloc_size(current_size), true);
USize *mem_new = (USize *)Memory::alloc_static(_get_alloc_size(current_size) + ALLOC_PAD, false);
mem_new += 2;
new (mem_new - 2) SafeNumeric<uint32_t>(1); // refcount
*(mem_new - 1) = current_size; // size
new (mem_new - 2) SafeNumeric<USize>(1); //refcount
*(mem_new - 1) = current_size; //size
T *_data = (T *)(mem_new);
@@ -255,8 +280,8 @@ uint32_t CowData<T>::_copy_on_write() {
memcpy(mem_new, _ptr, current_size * sizeof(T));
} else {
for (uint32_t i = 0; i < current_size; i++) {
memnew_placement(&_data[i], T(_get_data()[i]));
for (USize i = 0; i < current_size; i++) {
memnew_placement(&_data[i], T(_ptr[i]));
}
}
@@ -269,10 +294,11 @@ uint32_t CowData<T>::_copy_on_write() {
}
template <class T>
Error CowData<T>::resize(int p_size) {
template <bool p_ensure_zero>
Error CowData<T>::resize(Size p_size) {
ERR_FAIL_COND_V(p_size < 0, ERR_INVALID_PARAMETER);
int current_size = size();
Size current_size = size();
if (p_size == current_size) {
return OK;
@@ -286,27 +312,29 @@ Error CowData<T>::resize(int p_size) {
}
// possibly changing size, copy on write
uint32_t rc = _copy_on_write();
USize rc = _copy_on_write();
size_t current_alloc_size = _get_alloc_size(current_size);
size_t alloc_size;
USize current_alloc_size = _get_alloc_size(current_size);
USize alloc_size;
ERR_FAIL_COND_V(!_get_alloc_size_checked(p_size, &alloc_size), ERR_OUT_OF_MEMORY);
if (p_size > current_size) {
if (alloc_size != current_alloc_size) {
if (current_size == 0) {
// alloc from scratch
uint32_t *ptr = (uint32_t *)Memory::alloc_static(alloc_size, true);
USize *ptr = (USize *)Memory::alloc_static(alloc_size + ALLOC_PAD, false);
ptr += 2;
ERR_FAIL_NULL_V(ptr, ERR_OUT_OF_MEMORY);
*(ptr - 1) = 0; // size, currently none
new (ptr - 2) SafeNumeric<uint32_t>(1); // refcount
*(ptr - 1) = 0; //size, currently none
new (ptr - 2) SafeNumeric<USize>(1); //refcount
_ptr = (T *)ptr;
} else {
uint32_t *_ptrnew = (uint32_t *)Memory::realloc_static(_ptr, alloc_size, true);
USize *_ptrnew = (USize *)Memory::realloc_static(((uint8_t *)_ptr) - ALLOC_PAD, alloc_size + ALLOC_PAD, false);
ERR_FAIL_NULL_V(_ptrnew, ERR_OUT_OF_MEMORY);
new (_ptrnew - 2) SafeNumeric<uint32_t>(rc); // refcount
_ptrnew += 2;
new (_ptrnew - 2) SafeNumeric<USize>(rc); //refcount
_ptr = (T *)(_ptrnew);
}
@@ -315,11 +343,11 @@ Error CowData<T>::resize(int p_size) {
// construct the newly created elements
if (!std::is_trivially_constructible<T>::value) {
T *elems = _get_data();
for (int i = *_get_size(); i < p_size; i++) {
memnew_placement(&elems[i], T);
for (Size i = *_get_size(); i < p_size; i++) {
memnew_placement(&_ptr[i], T);
}
} else if (p_ensure_zero) {
memset((void *)(_ptr + current_size), 0, (p_size - current_size) * sizeof(T));
}
*_get_size() = p_size;
@@ -327,16 +355,17 @@ Error CowData<T>::resize(int p_size) {
} else if (p_size < current_size) {
if (!std::is_trivially_destructible<T>::value) {
// deinitialize no longer needed elements
for (uint32_t i = p_size; i < *_get_size(); i++) {
T *t = &_get_data()[i];
for (USize i = p_size; i < *_get_size(); i++) {
T *t = &_ptr[i];
t->~T();
}
}
if (alloc_size != current_alloc_size) {
uint32_t *_ptrnew = (uint32_t *)Memory::realloc_static(_ptr, alloc_size, true);
USize *_ptrnew = (USize *)Memory::realloc_static(((uint8_t *)_ptr) - ALLOC_PAD, alloc_size + ALLOC_PAD, false);
ERR_FAIL_NULL_V(_ptrnew, ERR_OUT_OF_MEMORY);
new (_ptrnew - 2) SafeNumeric<uint32_t>(rc); // refcount
_ptrnew += 2;
new (_ptrnew - 2) SafeNumeric<USize>(rc); //refcount
_ptr = (T *)(_ptrnew);
}
@@ -348,14 +377,14 @@ Error CowData<T>::resize(int p_size) {
}
template <class T>
int CowData<T>::find(const T &p_val, int p_from) const {
int ret = -1;
typename CowData<T>::Size CowData<T>::find(const T &p_val, Size p_from) const {
Size ret = -1;
if (p_from < 0 || size() == 0) {
return ret;
}
for (int i = p_from; i < size(); i++) {
for (Size i = p_from; i < size(); i++) {
if (get(i) == p_val) {
ret = i;
break;
@@ -365,6 +394,36 @@ int CowData<T>::find(const T &p_val, int p_from) const {
return ret;
}
template <class T>
typename CowData<T>::Size CowData<T>::rfind(const T &p_val, Size p_from) const {
const Size s = size();
if (p_from < 0) {
p_from = s + p_from;
}
if (p_from < 0 || p_from >= s) {
p_from = s - 1;
}
for (Size i = p_from; i >= 0; i--) {
if (get(i) == p_val) {
return i;
}
}
return -1;
}
template <class T>
typename CowData<T>::Size CowData<T>::count(const T &p_val) const {
Size amount = 0;
for (Size i = 0; i < size(); i++) {
if (get(i) == p_val) {
amount++;
}
}
return amount;
}
template <class T>
void CowData<T>::_ref(const CowData *p_from) {
_ref(*p_from);

View File

@@ -48,6 +48,15 @@ namespace godot {
// value and, as an important benefit, you can be sure the value is properly synchronized
// even with threads that are already running.
// These are used in very specific areas of the engine where it's critical that these guarantees are held
#define SAFE_NUMERIC_TYPE_PUN_GUARANTEES(m_type) \
static_assert(sizeof(SafeNumeric<m_type>) == sizeof(m_type)); \
static_assert(alignof(SafeNumeric<m_type>) == alignof(m_type)); \
static_assert(std::is_trivially_destructible<std::atomic<m_type>>::value);
#define SAFE_FLAG_TYPE_PUN_GUARANTEES \
static_assert(sizeof(SafeFlag) == sizeof(bool)); \
static_assert(alignof(SafeFlag) == alignof(bool));
template <class T>
class SafeNumeric {
std::atomic<T> value;

View File

@@ -50,7 +50,7 @@ namespace godot {
template <class T>
class VectorWriteProxy {
public:
_FORCE_INLINE_ T &operator[](int p_index) {
_FORCE_INLINE_ T &operator[](typename CowData<T>::Size p_index) {
CRASH_BAD_INDEX(p_index, ((Vector<T> *)(this))->_cowdata.size());
return ((Vector<T> *)(this))->_cowdata.ptrw()[p_index];
@@ -63,22 +63,26 @@ class Vector {
public:
VectorWriteProxy<T> write;
typedef typename CowData<T>::Size Size;
private:
CowData<T> _cowdata;
public:
bool push_back(T p_elem);
_FORCE_INLINE_ bool append(const T &p_elem) { return push_back(p_elem); } // alias
_FORCE_INLINE_ bool append(const T &p_elem) { return push_back(p_elem); } //alias
void fill(T p_elem);
void remove_at(int p_index) { _cowdata.remove_at(p_index); }
void erase(const T &p_val) {
int idx = find(p_val);
void remove_at(Size p_index) { _cowdata.remove_at(p_index); }
_FORCE_INLINE_ bool erase(const T &p_val) {
Size idx = find(p_val);
if (idx >= 0) {
remove_at(idx);
return true;
}
return false;
}
void reverse();
_FORCE_INLINE_ T *ptrw() { return _cowdata.ptrw(); }
@@ -86,37 +90,45 @@ public:
_FORCE_INLINE_ void clear() { resize(0); }
_FORCE_INLINE_ bool is_empty() const { return _cowdata.is_empty(); }
_FORCE_INLINE_ T get(int p_index) { return _cowdata.get(p_index); }
_FORCE_INLINE_ const T &get(int p_index) const { return _cowdata.get(p_index); }
_FORCE_INLINE_ void set(int p_index, const T &p_elem) { _cowdata.set(p_index, p_elem); }
_FORCE_INLINE_ int size() const { return _cowdata.size(); }
Error resize(int p_size) { return _cowdata.resize(p_size); }
_FORCE_INLINE_ const T &operator[](int p_index) const { return _cowdata.get(p_index); }
Error insert(int p_pos, T p_val) { return _cowdata.insert(p_pos, p_val); }
int find(const T &p_val, int p_from = 0) const { return _cowdata.find(p_val, p_from); }
_FORCE_INLINE_ T get(Size p_index) { return _cowdata.get(p_index); }
_FORCE_INLINE_ const T &get(Size p_index) const { return _cowdata.get(p_index); }
_FORCE_INLINE_ void set(Size p_index, const T &p_elem) { _cowdata.set(p_index, p_elem); }
_FORCE_INLINE_ Size size() const { return _cowdata.size(); }
Error resize(Size p_size) { return _cowdata.resize(p_size); }
Error resize_zeroed(Size p_size) { return _cowdata.template resize<true>(p_size); }
_FORCE_INLINE_ const T &operator[](Size p_index) const { return _cowdata.get(p_index); }
Error insert(Size p_pos, T p_val) { return _cowdata.insert(p_pos, p_val); }
Size find(const T &p_val, Size p_from = 0) const { return _cowdata.find(p_val, p_from); }
Size rfind(const T &p_val, Size p_from = -1) const { return _cowdata.rfind(p_val, p_from); }
Size count(const T &p_val) const { return _cowdata.count(p_val); }
void append_array(Vector<T> p_other);
_FORCE_INLINE_ bool has(const T &p_val) const { return find(p_val) != -1; }
template <class C>
void sort_custom() {
int len = _cowdata.size();
void sort() {
sort_custom<_DefaultComparator<T>>();
}
template <class Comparator, bool Validate = SORT_ARRAY_VALIDATE_ENABLED, class... Args>
void sort_custom(Args &&...args) {
Size len = _cowdata.size();
if (len == 0) {
return;
}
T *data = ptrw();
SortArray<T, C> sorter;
SortArray<T, Comparator, Validate> sorter{ args... };
sorter.sort(data, len);
}
void sort() {
sort_custom<_DefaultComparator<T>>();
Size bsearch(const T &p_value, bool p_before) {
return bsearch_custom<_DefaultComparator<T>>(p_value, p_before);
}
int bsearch(const T &p_value, bool p_before) {
SearchArray<T> search;
template <class Comparator, class Value, class... Args>
Size bsearch_custom(const Value &p_value, bool p_before, Args &&...args) {
SearchArray<T, Comparator> search{ args... };
return search.bisect(ptrw(), size(), p_value, p_before);
}
@@ -125,7 +137,7 @@ public:
}
void ordered_insert(const T &p_val) {
int i;
Size i;
for (i = 0; i < _cowdata.size(); i++) {
if (p_val < operator[](i)) {
break;
@@ -140,33 +152,36 @@ public:
Vector<uint8_t> to_byte_array() const {
Vector<uint8_t> ret;
if (is_empty()) {
return ret;
}
ret.resize(size() * sizeof(T));
memcpy(ret.ptrw(), ptr(), sizeof(T) * size());
return ret;
}
Vector<T> slice(int p_begin, int p_end = INT_MAX) const {
Vector<T> slice(Size p_begin, Size p_end = CowData<T>::MAX_INT) const {
Vector<T> result;
const int s = size();
const Size s = size();
int begin = Math::clamp(p_begin, -s, s);
Size begin = CLAMP(p_begin, -s, s);
if (begin < 0) {
begin += s;
}
int end = Math::clamp(p_end, -s, s);
Size end = CLAMP(p_end, -s, s);
if (end < 0) {
end += s;
}
ERR_FAIL_COND_V(begin > end, result);
int result_size = end - begin;
Size result_size = end - begin;
result.resize(result_size);
const T *const r = ptr();
T *const w = result.ptrw();
for (int i = 0; i < result_size; ++i) {
for (Size i = 0; i < result_size; ++i) {
w[i] = r[begin + i];
}
@@ -174,11 +189,11 @@ public:
}
bool operator==(const Vector<T> &p_arr) const {
int s = size();
Size s = size();
if (s != p_arr.size()) {
return false;
}
for (int i = 0; i < s; i++) {
for (Size i = 0; i < s; i++) {
if (operator[](i) != p_arr[i]) {
return false;
}
@@ -187,11 +202,11 @@ public:
}
bool operator!=(const Vector<T> &p_arr) const {
int s = size();
Size s = size();
if (s != p_arr.size()) {
return true;
}
for (int i = 0; i < s; i++) {
for (Size i = 0; i < s; i++) {
if (operator[](i) != p_arr[i]) {
return true;
}
@@ -268,7 +283,7 @@ public:
Error err = _cowdata.resize(p_init.size());
ERR_FAIL_COND(err);
int i = 0;
Size i = 0;
for (const T &element : p_init) {
_cowdata.set(i++, element);
}
@@ -280,7 +295,7 @@ public:
template <class T>
void Vector<T>::reverse() {
for (int i = 0; i < size() / 2; i++) {
for (Size i = 0; i < size() / 2; i++) {
T *p = ptrw();
SWAP(p[i], p[size() - i - 1]);
}
@@ -288,13 +303,13 @@ void Vector<T>::reverse() {
template <class T>
void Vector<T>::append_array(Vector<T> p_other) {
const int ds = p_other.size();
const Size ds = p_other.size();
if (ds == 0) {
return;
}
const int bs = size();
const Size bs = size();
resize(bs + ds);
for (int i = 0; i < ds; ++i) {
for (Size i = 0; i < ds; ++i) {
ptrw()[bs + i] = p_other[i];
}
}
@@ -311,7 +326,7 @@ bool Vector<T>::push_back(T p_elem) {
template <class T>
void Vector<T>::fill(T p_elem) {
T *p = ptrw();
for (int i = 0; i < size(); i++) {
for (Size i = 0; i < size(); i++) {
p[i] = p_elem;
}
}