String and math fixes

- Added missing static String constructors
- Implemented String operator for math types
- Added XYZ and YXZ euler angles methods
- Fixed wrong det checks in Basis
- Fixed operator Quat in Basis
This commit is contained in:
Marc Gilleron
2018-01-23 00:24:23 +01:00
parent 411d2f6d1f
commit 4f4bb8deff
11 changed files with 270 additions and 67 deletions

View File

@@ -59,7 +59,7 @@ void Basis::invert()
elements[0][2] * co[2];
ERR_FAIL_COND(det != 0);
ERR_FAIL_COND(det == 0);
real_t s = 1.0/det;
@@ -179,8 +179,18 @@ Vector3 Basis::get_scale() const
);
}
Vector3 Basis::get_euler() const
{
// get_euler_xyz returns a vector containing the Euler angles in the format
// (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
// (following the convention they are commonly defined in the literature).
//
// The current implementation uses XYZ convention (Z is the first rotation),
// so euler.z is the angle of the (first) rotation around Z axis and so on,
//
// And thus, assuming the matrix is a rotation matrix, this function returns
// the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
// around the z-axis by a and so on.
Vector3 Basis::get_euler_xyz() const {
// Euler angles in XYZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
@@ -190,50 +200,130 @@ Vector3 Basis::get_euler() const
Vector3 euler;
if (is_rotation() == false)
return euler;
euler.y = ::asin(elements[0][2]);
if ( euler.y < Math_PI*0.5) {
if ( euler.y > -Math_PI*0.5) {
euler.x = ::atan2(-elements[1][2],elements[2][2]);
euler.z = ::atan2(-elements[0][1],elements[0][0]);
ERR_FAIL_COND_V(is_rotation() == false, euler);
real_t sy = elements[0][2];
if (sy < 1.0) {
if (sy > -1.0) {
// is this a pure Y rotation?
if (elements[1][0] == 0.0 && elements[0][1] == 0.0 && elements[1][2] == 0 && elements[2][1] == 0 && elements[1][1] == 1) {
// return the simplest form (human friendlier in editor and scripts)
euler.x = 0;
euler.y = atan2(elements[0][2], elements[0][0]);
euler.z = 0;
} else {
euler.x = ::atan2(-elements[1][2], elements[2][2]);
euler.y = ::asin(sy);
euler.z = ::atan2(-elements[0][1], elements[0][0]);
}
} else {
real_t r = ::atan2(elements[1][0],elements[1][1]);
euler.x = -::atan2(elements[0][1], elements[1][1]);
euler.y = -Math_PI / 2.0;
euler.z = 0.0;
euler.x = euler.z - r;
}
} else {
real_t r = ::atan2(elements[0][1],elements[1][1]);
euler.x = ::atan2(elements[0][1], elements[1][1]);
euler.y = Math_PI / 2.0;
euler.z = 0.0;
}
return euler;
}
// set_euler_xyz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// The current implementation uses XYZ convention (Z is the first rotation).
void Basis::set_euler_xyz(const Vector3 &p_euler) {
real_t c, s;
c = ::cos(p_euler.x);
s = ::sin(p_euler.x);
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
c = ::cos(p_euler.y);
s = ::sin(p_euler.y);
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
c = ::cos(p_euler.z);
s = ::sin(p_euler.z);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
//optimizer will optimize away all this anyway
*this = xmat * (ymat * zmat);
}
// get_euler_yxz returns a vector containing the Euler angles in the YXZ convention,
// as in first-Z, then-X, last-Y. The angles for X, Y, and Z rotations are returned
// as the x, y, and z components of a Vector3 respectively.
Vector3 Basis::get_euler_yxz() const {
// Euler angles in YXZ convention.
// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
// cx*sz cx*cz -sx
// cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
Vector3 euler;
ERR_FAIL_COND_V(is_rotation() == false, euler);
real_t m12 = elements[1][2];
if (m12 < 1) {
if (m12 > -1) {
// is this a pure X rotation?
if (elements[1][0] == 0 && elements[0][1] == 0 && elements[0][2] == 0 && elements[2][0] == 0 && elements[0][0] == 1) {
// return the simplest form (human friendlier in editor and scripts)
euler.x = atan2(-m12, elements[1][1]);
euler.y = 0;
euler.z = 0;
} else {
euler.x = asin(-m12);
euler.y = atan2(elements[0][2], elements[2][2]);
euler.z = atan2(elements[1][0], elements[1][1]);
}
} else { // m12 == -1
euler.x = Math_PI * 0.5;
euler.y = -atan2(-elements[0][1], elements[0][0]);
euler.z = 0;
}
} else { // m12 == 1
euler.x = -Math_PI * 0.5;
euler.y = -atan2(-elements[0][1], elements[0][0]);
euler.z = 0;
euler.x = r - euler.z;
}
return euler;
}
void Basis::set_euler(const Vector3& p_euler)
{
// set_euler_yxz expects a vector containing the Euler angles in the format
// (ax,ay,az), where ax is the angle of rotation around x axis,
// and similar for other axes.
// The current implementation uses YXZ convention (Z is the first rotation).
void Basis::set_euler_yxz(const Vector3 &p_euler) {
real_t c, s;
c = ::cos(p_euler.x);
s = ::sin(p_euler.x);
Basis xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c);
Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
c = ::cos(p_euler.y);
s = ::sin(p_euler.y);
Basis ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c);
Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
c = ::cos(p_euler.z);
s = ::sin(p_euler.z);
Basis zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0);
Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
//optimizer will optimize away all this anyway
*this = xmat*(ymat*zmat);
*this = ymat * xmat * zmat;
}
// transposed dot products
real_t Basis::tdotx(const Vector3& v) const {
return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
@@ -344,7 +434,16 @@ Basis Basis::operator*(real_t p_val) const {
Basis::operator String() const
{
String s;
// @Todo
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (i != 0 || j != 0)
s += ", ";
s += String::num(elements[i][j]);
}
}
return s;
}
@@ -398,7 +497,7 @@ Basis Basis::transpose_xform(const Basis& m) const
void Basis::orthonormalize()
{
ERR_FAIL_COND(determinant() != 0);
ERR_FAIL_COND(determinant() == 0);
// Gram-Schmidt Process
@@ -617,7 +716,8 @@ Basis::Basis(const Vector3& p_axis, real_t p_phi) {
}
Basis::operator Quat() const {
ERR_FAIL_COND_V(is_rotation() == false, Quat());
//commenting this check because precision issues cause it to fail when it shouldn't
//ERR_FAIL_COND_V(is_rotation() == false, Quat());
real_t trace = elements[0][0] + elements[1][1] + elements[2][2];
real_t temp[4];