Files
mcpe/thirdparty/raknet/Rand.cpp
Brent 5ac3aa6d9e macOS Support & AppPlatform Cleanup (#57)
* macOS Support & Cleanup

* Fix malformed comments in build-wasm.bat

* Emscripten Fixes

* * Add shebang to the grabsounds.py script

Since it was changed from rw- to rwx, I'll add the shebang so that it actually runs properly.

* * Re-add the patch_data and readme files.

* * Remove sound data.

* Fix some more things.

* Think it's ready to pull now...

---------

Co-authored-by: BrentDaMage <BrentDaMage@users.noreply.github.com>
Co-authored-by: iProgramInCpp <iprogramincpp@gmail.com>
2023-08-17 11:20:59 +03:00

276 lines
8.7 KiB
C++

/**
*
* Grabbed by Kevin from http://www.math.keio.ac.jp/~matumoto/cokus.c
* This is the ``Mersenne Twister'' random number generator MT19937, which
* generates pseudorandom integers uniformly distributed in 0..(2^32 - 1)
* starting from any odd seed in 0..(2^32 - 1). This version is a recode
* by Shawn Cokus (Cokus@math.washington.edu) on March 8, 1998 of a version by
* Takuji Nishimura (who had suggestions from Topher Cooper and Marc Rieffel in
* July-August 1997).
*
* Effectiveness of the recoding (on Goedel2.math.washington.edu, a DEC Alpha
* running OSF/1) using GCC -O3 as a compiler: before recoding: 51.6 sec. to
* generate 300 million random numbers; after recoding: 24.0 sec. for the same
* (i.e., 46.5% of original time), so speed is now about 12.5 million random
* number generations per second on this machine.
*
* According to the URL <http://www.math.keio.ac.jp/~matumoto/emt.html>
* (and paraphrasing a bit in places), the Mersenne Twister is ``designed
* with consideration of the flaws of various existing generators,'' has
* a period of 2^19937 - 1, gives a sequence that is 623-dimensionally
* equidistributed, and ``has passed many stringent tests, including the
* die-hard test of G. Marsaglia and the load test of P. Hellekalek and
* S. Wegenkittl.'' It is efficient in memory usage (typically using 2506
* to 5012 bytes of static data, depending on data type sizes, and the code
* is quite short as well). It generates random numbers in batches of 624
* at a time, so the caching and pipelining of modern systems is exploited.
* It is also divide- and mod-free.
*
* Licensing is free http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/elicense.html
*
* The code as Shawn received it included the following notice:
*
* Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. When
* you use this, send an e-mail to <matumoto@math.keio.ac.jp> with
* an appropriate reference to your work.
*
* It would be nice to CC: <Cokus@math.washington.edu> when you write.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "Rand.h"
//
// uint32 must be an unsigned integer type capable of holding at least 32
// bits; exactly 32 should be fastest, but 64 is better on an Alpha with
// GCC at -O3 optimization so try your options and see what's best for you
//
//typedef unsigned int uint32;
#define N (624) // length of state vector
#define M (397) // a period parameter
#define K (0x9908B0DFU) // a magic constant
#define hiBit(u) ((u) & 0x80000000U) // mask all but highest bit of u
#define loBit(u) ((u) & 0x00000001U) // mask all but lowest bit of u
#define loBits(u) ((u) & 0x7FFFFFFFU) // mask the highest bit of u
#define mixBits(u, v) (hiBit(u)|loBits(v)) // move hi bit of u to hi bit of v
static unsigned int _state[ N + 1 ]; // state vector + 1 extra to not violate ANSI C
static unsigned int *_next; // next random value is computed from here
static int _left = -1; // can *next++ this many times before reloading
using namespace RakNet;
void seedMT( unsigned int seed, unsigned int *state, unsigned int *&next, int &left );
unsigned int reloadMT( unsigned int *state, unsigned int *&next, int &left );
unsigned int randomMT( unsigned int *state, unsigned int *&next, int &left );
void fillBufferMT( void *buffer, unsigned int bytes, unsigned int *state, unsigned int *&next, int &left );
float frandomMT( unsigned int *state, unsigned int *&next, int &left );
// Uses global vars
void seedMT( unsigned int seed )
{
seedMT(seed, _state, _next, _left);
}
unsigned int reloadMT( void )
{
return reloadMT(_state, _next, _left);
}
unsigned int randomMT( void )
{
return randomMT(_state, _next, _left);
}
float frandomMT( void )
{
return frandomMT(_state, _next, _left);
}
void fillBufferMT( void *buffer, unsigned int bytes )
{
fillBufferMT(buffer, bytes, _state, _next, _left);
}
void seedMT( unsigned int seed, unsigned int *state, unsigned int *&next, int &left ) // Defined in cokus_c.c
{
(void) next;
//
// We initialize state[0..(N-1)] via the generator
//
// x_new = (69069 * x_old) mod 2^32
//
// from Line 15 of Table 1, p. 106, Sec. 3.3.4 of Knuth's
// _The Art of Computer Programming_, Volume 2, 3rd ed.
//
// Notes (SJC): I do not know what the initial state requirements
// of the Mersenne Twister are, but it seems this seeding generator
// could be better. It achieves the maximum period for its modulus
// (2^30) iff x_initial is odd (p. 20-21, Sec. 3.2.1.2, Knuth); if
// x_initial can be even, you have sequences like 0, 0, 0, ...;
// 2^31, 2^31, 2^31, ...; 2^30, 2^30, 2^30, ...; 2^29, 2^29 + 2^31,
// 2^29, 2^29 + 2^31, ..., etc. so I force seed to be odd below.
//
// Even if x_initial is odd, if x_initial is 1 mod 4 then
//
// the lowest bit of x is always 1,
// the next-to-lowest bit of x is always 0,
// the 2nd-from-lowest bit of x alternates ... 0 1 0 1 0 1 0 1 ... ,
// the 3rd-from-lowest bit of x 4-cycles ... 0 1 1 0 0 1 1 0 ... ,
// the 4th-from-lowest bit of x has the 8-cycle ... 0 0 0 1 1 1 1 0 ... ,
// ...
//
// and if x_initial is 3 mod 4 then
//
// the lowest bit of x is always 1,
// the next-to-lowest bit of x is always 1,
// the 2nd-from-lowest bit of x alternates ... 0 1 0 1 0 1 0 1 ... ,
// the 3rd-from-lowest bit of x 4-cycles ... 0 0 1 1 0 0 1 1 ... ,
// the 4th-from-lowest bit of x has the 8-cycle ... 0 0 1 1 1 1 0 0 ... ,
// ...
//
// The generator's potency (min. s>=0 with (69069-1)^s = 0 mod 2^32) is
// 16, which seems to be alright by p. 25, Sec. 3.2.1.3 of Knuth. It
// also does well in the dimension 2..5 spectral tests, but it could be
// better in dimension 6 (Line 15, Table 1, p. 106, Sec. 3.3.4, Knuth).
//
// Note that the random number user does not see the values generated
// here directly since reloadMT() will always munge them first, so maybe
// none of all of this matters. In fact, the seed values made here could
// even be extra-special desirable if the Mersenne Twister theory says
// so-- that's why the only change I made is to restrict to odd seeds.
//
register unsigned int x = ( seed | 1U ) & 0xFFFFFFFFU, *s = state;
register int j;
for ( left = 0, *s++ = x, j = N; --j;
*s++ = ( x *= 69069U ) & 0xFFFFFFFFU )
;
}
unsigned int reloadMT( unsigned int *state, unsigned int *&next, int &left )
{
unsigned int * p0 = state, *p2 = state + 2, *pM = state + M, s0, s1;
int j;
if ( left < -1 )
seedMT( 4357U );
left = N - 1; next = state + 1;
for ( s0 = state[ 0 ], s1 = state[ 1 ], j = N - M + 1; --j; s0 = s1, s1 = *p2++ )
* p0++ = *pM++ ^ ( mixBits( s0, s1 ) >> 1 ) ^ ( loBit( s1 ) ? K : 0U );
for ( pM = state, j = M; --j; s0 = s1, s1 = *p2++ )
* p0++ = *pM++ ^ ( mixBits( s0, s1 ) >> 1 ) ^ ( loBit( s1 ) ? K : 0U );
s1 = state[ 0 ];
*p0 = *pM ^ ( mixBits( s0, s1 ) >> 1 ) ^ ( loBit( s1 ) ? K : 0U );
s1 ^= ( s1 >> 11 );
s1 ^= ( s1 << 7 ) & 0x9D2C5680U;
s1 ^= ( s1 << 15 ) & 0xEFC60000U;
return ( s1 ^ ( s1 >> 18 ) );
}
unsigned int randomMT( unsigned int *state, unsigned int *&next, int &left )
{
unsigned int y;
if ( --left < 0 )
return ( reloadMT(state, next, left) );
y = *next++;
y ^= ( y >> 11 );
y ^= ( y << 7 ) & 0x9D2C5680U;
y ^= ( y << 15 ) & 0xEFC60000U;
return ( y ^ ( y >> 18 ) );
// This change made so the value returned is in the same range as what rand() returns
// return(y ^ (y >> 18)) % 32767;
}
void fillBufferMT( void *buffer, unsigned int bytes, unsigned int *state, unsigned int *&next, int &left )
{
unsigned int offset=0;
unsigned int r;
while (bytes-offset>=sizeof(r))
{
r = randomMT(state, next, left);
memcpy((char*)buffer+offset, &r, sizeof(r));
offset+=sizeof(r);
}
r = randomMT(state, next, left);
memcpy((char*)buffer+offset, &r, bytes-offset);
}
float frandomMT( unsigned int *state, unsigned int *&next, int &left )
{
return ( float ) ( ( double ) randomMT(state, next, left) / 4294967296.0 );
}
RakNetRandom::RakNetRandom()
{
left=-1;
}
RakNetRandom::~RakNetRandom()
{
}
void RakNetRandom::SeedMT( unsigned int seed )
{
printf("%i\n",seed);
seedMT(seed, state, next, left);
}
unsigned int RakNetRandom::ReloadMT( void )
{
return reloadMT(state, next, left);
}
unsigned int RakNetRandom::RandomMT( void )
{
return randomMT(state, next, left);
}
float RakNetRandom::FrandomMT( void )
{
return frandomMT(state, next, left);
}
void RakNetRandom::FillBufferMT( void *buffer, unsigned int bytes )
{
fillBufferMT(buffer, bytes, state, next, left);
}
/*
int main(void)
{
int j;
// you can seed with any uint32, but the best are odds in 0..(2^32 - 1)
seedMT(4357U);
// print the first 2,002 random numbers seven to a line as an example
for(j=0; j<2002; j++)
RAKNET_DEBUG_PRINTF(" %10lu%s", (unsigned int) randomMT(), (j%7)==6 ? "\n" : "");
return(EXIT_SUCCESS);
}
*/