Files
HL2Overcharged/public/bone_setup_hydra.h
2025-05-21 21:20:08 +03:00

501 lines
16 KiB
C++

//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#ifndef BONE_SETUP_H
#define BONE_SETUP_H
#ifdef _WIN32
#pragma once
#endif
#include "studio.h"
#include "cmodel.h"
#include "bitvec.h"
class CBoneToWorld;
class CIKContext_Hydra;
class CBoneAccessor;
// This provides access to networked arrays, so if this code actually changes a value,
// the entity is marked as changed.
abstract_class IParameterAccess_Hydra
{
public:
virtual float GetParameter(int iParam) = 0;
virtual void SetParameter(int iParam, float flValue) = 0;
};
class CBoneBitList_Hydra : public CBitVec<MAXSTUDIOBONES>
{
public:
inline void MarkBone(int iBone)
{
Set(iBone);
}
inline bool IsBoneMarked(int iBone)
{
return Get(iBone) != 0 ? true : false;
}
};
//-----------------------------------------------------------------------------
// Purpose: blends together all the bones from two p:q lists
//
// p1 = p1 * (1 - s) + p2 * s
// q1 = q1 * (1 - s) + q2 * s
//-----------------------------------------------------------------------------
void SlerpBones_Hydra(
const CStudioHdr *pStudioHdr,
Quaternion q1[MAXSTUDIOBONES],
Vector pos1[MAXSTUDIOBONES],
mstudioseqdesc_t &seqdesc, // source of q2 and pos2
int sequence,
const Quaternion q2[MAXSTUDIOBONES],
const Vector pos2[MAXSTUDIOBONES],
float s,
int boneMask
);
void InitPose_Hydra(
const CStudioHdr *pStudioHdr,
Vector pos[],
Quaternion q[],
int boneMask
);
void CalcPose_Hydra(
const CStudioHdr *pStudioHdr,
CIKContext_Hydra *pIKContext, //optional
Vector pos[],
Quaternion q[],
int sequence,
float cycle,
const float poseParameter[],
int boneMask,
float flWeight = 1.0f,
float flTime = 0.0f
);
bool CalcPoseSingle_Hydra(
const CStudioHdr *pStudioHdr,
Vector pos[],
Quaternion q[],
mstudioseqdesc_t &seqdesc,
int sequence,
float cycle,
const float poseParameter[],
int boneMask,
float flTime
);
void AccumulatePose(
const CStudioHdr *pStudioHdr,
CIKContext_Hydra *pIKContext, //optional
Vector pos[],
Quaternion q[],
int sequence,
float cycle,
const float poseParameter[],
int boneMask,
float flWeight,
float flTime
);
// takes a "controllers[]" array normalized to 0..1 and adds in the adjustments to pos[], and q[].
void CalcBoneAdj_Hydra(
const CStudioHdr *pStudioHdr,
Vector pos[],
Quaternion q[],
const float controllers[],
int boneMask
);
// Given two samples of a bone separated in time by dt,
// compute the velocity and angular velocity of that bone
void CalcBoneDerivatives_Hydra(Vector &velocity, AngularImpulse &angVel, const matrix3x4_t &prev, const matrix3x4_t &current, float dt);
// Give a derivative of a bone, compute the velocity & angular velocity of that bone
void CalcBoneVelocityFromDerivative_Hydra(const QAngle &vecAngles, Vector &velocity, AngularImpulse &angVel, const matrix3x4_t &current);
// This function sets up the local transform for a single frame of animation. It doesn't handle
// pose parameters or interpolation between frames.
void SetupSingleBoneMatrix_Hydra(
CStudioHdr *pOwnerHdr,
int nSequence,
int iFrame,
int iBone,
matrix3x4_t &mBoneLocal);
// Purpose: build boneToWorld transforms for a specific bone
void BuildBoneChain_Hydra(
const CStudioHdr *pStudioHdr,
const matrix3x4_t &rootxform,
const Vector pos[],
const Quaternion q[],
int iBone,
matrix3x4_t *pBoneToWorld);
void BuildBoneChain_Hydra(
const CStudioHdr *pStudioHdr,
const matrix3x4_t &rootxform,
const Vector pos[],
const Quaternion q[],
int iBone,
matrix3x4_t *pBoneToWorld,
CBoneBitList_Hydra &boneComputed);
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
// ik info
class CIKTarget_Hydra
{
public:
void SetOwner(int entindex, const Vector &pos, const QAngle &angles);
void ClearOwner(void);
int GetOwner(void);
void UpdateOwner(int entindex, const Vector &pos, const QAngle &angles);
void SetPos(const Vector &pos);
void SetAngles(const QAngle &angles);
void SetQuaternion(const Quaternion &q);
void SetNormal(const Vector &normal);
void SetPosWithNormalOffset(const Vector &pos, const Vector &normal);
void SetOnWorld(bool bOnWorld = true);
bool IsActive(void);
void IKFailed(void);
int chain;
int type;
void MoveReferenceFrame(Vector &deltaPos, QAngle &deltaAngles);
// accumulated offset from ideal footplant location
public:
struct x2 {
char *pAttachmentName;
Vector pos;
Quaternion q;
} offset;
private:
struct x3 {
Vector pos;
Quaternion q;
} ideal;
public:
struct x4 {
float latched;
float release;
float height;
float floor;
float radius;
float flTime;
float flWeight;
Vector pos;
Quaternion q;
bool onWorld;
} est; // estimate contact position
struct x5 {
float hipToFoot; // distance from hip
float hipToKnee; // distance from hip to knee
float kneeToFoot; // distance from knee to foot
Vector hip; // location of hip
Vector closest; // closest valid location from hip to foot that the foot can move to
Vector knee; // pre-ik location of knee
Vector farthest; // farthest valid location from hip to foot that the foot can move to
Vector lowest; // lowest position directly below hip that the foot can drop to
} trace;
private:
// internally latched footset, position
struct x1 {
// matrix3x4_t worldTarget;
bool bNeedsLatch;
bool bHasLatch;
float influence;
int iFramecounter;
int owner;
Vector absOrigin;
QAngle absAngles;
Vector pos;
Quaternion q;
Vector deltaPos; // acculated error
Quaternion deltaQ;
Vector debouncePos;
Quaternion debounceQ;
} latched;
struct x6 {
float flTime; // time last error was detected
float flErrorTime;
float ramp;
bool bInError;
} error;
friend class CIKContext_Hydra;
};
struct ikchainresult_t_Hydra
{
// accumulated offset from ideal footplant location
int target;
Vector pos;
Quaternion q;
float flWeight;
};
struct ikcontextikrule_t_Hydra
{
int index;
int type;
int chain;
int bone;
int slot; // iktarget slot. Usually same as chain.
float height;
float radius;
float floor;
Vector pos;
Quaternion q;
float start; // beginning of influence
float peak; // start of full influence
float tail; // end of full influence
float end; // end of all influence
float top;
float drop;
float commit; // frame footstep target should be committed
float release; // frame ankle should end rotation from latched orientation
float flWeight; // processed version of start-end cycle
float flRuleWeight; // blending weight
float latched; // does the IK rule use a latched value?
char *szLabel;
Vector kneeDir;
Vector kneePos;
ikcontextikrule_t_Hydra() {}
private:
// No copy constructors allowed
ikcontextikrule_t_Hydra(const ikcontextikrule_t_Hydra& vOther);
};
void Studio_AlignIKMatrix_Hydra(matrix3x4_t &mMat, const Vector &vAlignTo);
bool Studio_SolveIK_Hydra(int iThigh, int iKnee, int iFoot, Vector &targetFoot, matrix3x4_t* pBoneToWorld);
bool Studio_SolveIK_Hydra(int iThigh, int iKnee, int iFoot, Vector &targetFoot, Vector &targetKneePos, Vector &targetKneeDir, matrix3x4_t* pBoneToWorld);
class CIKContext_Hydra
{
public:
CIKContext_Hydra();
void Init(const CStudioHdr *pStudioHdr, const QAngle &angles, const Vector &pos, float flTime, int iFramecounter, int boneMask);
void AddDependencies(mstudioseqdesc_t &seqdesc, int iSequence, float flCycle, const float poseParameters[], float flWeight = 1.0f);
void ClearTargets(void);
void UpdateTargets(Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList_Hydra &boneComputed);
void AutoIKRelease(void);
void SolveDependencies(Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList_Hydra &boneComputed);
void AddAutoplayLocks(Vector pos[], Quaternion q[]);
void SolveAutoplayLocks(Vector pos[], Quaternion q[]);
void AddSequenceLocks(mstudioseqdesc_t &SeqDesc, Vector pos[], Quaternion q[]);
void SolveSequenceLocks(mstudioseqdesc_t &SeqDesc, Vector pos[], Quaternion q[]);
void AddAllLocks(Vector pos[], Quaternion q[]);
void SolveAllLocks(Vector pos[], Quaternion q[]);
void SolveLock(const mstudioiklock_t *plock, int i, Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList_Hydra &boneComputed);
CUtlVectorFixed< CIKTarget_Hydra, 12 > m_target;
private:
CStudioHdr const *m_pStudioHdr;
bool Estimate(int iSequence, float flCycle, int iTarget, const float poseParameter[], float flWeight = 1.0f);
void BuildBoneChain(const Vector pos[], const Quaternion q[], int iBone, matrix3x4_t *pBoneToWorld, CBoneBitList_Hydra &boneComputed);
// virtual IK rules, filtered and combined from each sequence
CUtlVector< CUtlVector< ikcontextikrule_t_Hydra > > m_ikChainRule;
CUtlVector< ikcontextikrule_t_Hydra > m_ikLock;
matrix3x4_t m_rootxform;
int m_iFramecounter;
float m_flTime;
int m_boneMask;
};
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
// takes a "poseparameters[]" array normalized to 0..1 and layers on the sequences driven by them
void CalcAutoplaySequences_Hydra(
const CStudioHdr *pStudioHdr,
CIKContext_Hydra *pIKContext, //optional
Vector pos[],
Quaternion q[],
const float poseParameters[],
int boneMask,
float time
);
// replaces the bonetoworld transforms for all bones that are procedural
bool CalcProceduralBone_Hydra(
const CStudioHdr *pStudioHdr,
int iBone,
CBoneAccessor &bonetoworld
);
void Studio_BuildMatrices_Hydra(
const CStudioHdr *pStudioHdr,
const QAngle& angles,
const Vector& origin,
const Vector pos[],
const Quaternion q[],
int iBone,
matrix3x4_t bonetoworld[MAXSTUDIOBONES],
int boneMask
);
// Get a bone->bone relative transform
void Studio_CalcBoneToBoneTransform_Hydra(const CStudioHdr *pStudioHdr, int inputBoneIndex, int outputBoneIndex, matrix3x4_t &matrixOut);
// Given a bone rotation value, figures out the value you need to give to the controller
// to have the bone at that value.
// [in] flValue = the desired bone rotation value
// [out] ctlValue = the (0-1) value to set the controller t.
// return value = flValue, unwrapped to lie between the controller's start and end.
float Studio_SetController_Hydra(const CStudioHdr *pStudioHdr, int iController, float flValue, float &ctlValue);
// Given a 0-1 controller value, maps it into the controller's start and end and returns the bone rotation angle.
// [in] ctlValue = value in controller space (0-1).
// return value = value in bone space
float Studio_GetController_Hydra(const CStudioHdr *pStudioHdr, int iController, float ctlValue);
float Studio_GetPoseParameter_Hydra(const CStudioHdr *pStudioHdr, int iParameter, float ctlValue);
float Studio_SetPoseParameter_Hydra(const CStudioHdr *pStudioHdr, int iParameter, float flValue, float &ctlValue);
// converts a global 0..1 pose parameter into the local sequences blending value
void Studio_LocalPoseParameter_Hydra(const CStudioHdr *pStudioHdr, const float poseParameter[], mstudioseqdesc_t &seqdesc, int iSequence, int iLocalIndex, float &flSetting, int &index);
void Studio_SeqAnims_Hydra(const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[], mstudioanimdesc_t *panim[4], float *weight);
int Studio_MaxFrame_Hydra(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[]);
float Studio_FPS_Hydra(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[]);
float Studio_CPS_Hydra(const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[]);
float Studio_Duration_Hydra(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[]);
void Studio_MovementRate_Hydra(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], Vector *pVec);
// void Studio_Movement( const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], Vector *pVec );
//void Studio_AnimPosition( mstudioanimdesc_t *panim, float flCycle, Vector &vecPos, Vector &vecAngle );
//void Studio_AnimVelocity( mstudioanimdesc_t *panim, float flCycle, Vector &vecVelocity );
//float Studio_FindAnimDistance( mstudioanimdesc_t *panim, float flDist );
bool Studio_AnimMovement_Hydra(mstudioanimdesc_t *panim, float flCycleFrom, float flCycleTo, Vector &deltaPos, QAngle &deltaAngle);
bool Studio_SeqMovement_Hydra(const CStudioHdr *pStudioHdr, int iSequence, float flCycleFrom, float flCycleTo, const float poseParameter[], Vector &deltaMovement, QAngle &deltaAngle);
bool Studio_SeqVelocity_Hydra(const CStudioHdr *pStudioHdr, int iSequence, float flCycle, const float poseParameter[], Vector &vecVelocity);
float Studio_FindSeqDistance_Hydra(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], float flDist);
float Studio_FindSeqVelocity_Hydra(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], float flVelocity);
int Studio_FindAttachment_Hydra(const CStudioHdr *pStudioHdr, const char *pAttachmentName);
int Studio_FindRandomAttachment_Hydra(const CStudioHdr *pStudioHdr, const char *pAttachmentName);
int Studio_BoneIndexByName_Hydra(const CStudioHdr *pStudioHdr, const char *pName);
const char *Studio_GetDefaultSurfaceProps_Hydra(CStudioHdr *pstudiohdr);
float Studio_GetMass_Hydra(CStudioHdr *pstudiohdr);
const char *Studio_GetKeyValueText_Hydra(const CStudioHdr *pStudioHdr, int iSequence);
FORWARD_DECLARE_HANDLE(memhandle_t);
struct bonecacheparams_t_Hydra
{
CStudioHdr *pStudioHdr;
matrix3x4_t *pBoneToWorld;
float curtime;
int boneMask;
};
class CBoneCache_Hydra
{
public:
// you must implement these static functions for the ResourceManager
// -----------------------------------------------------------
static CBoneCache_Hydra *CreateResource(const bonecacheparams_t_Hydra &params);
static unsigned int EstimatedSize(const bonecacheparams_t_Hydra &params);
// -----------------------------------------------------------
// member functions that must be present for the ResourceManager
void DestroyResource();
CBoneCache_Hydra *GetData() { return this; }
unsigned int Size() { return m_size; }
// -----------------------------------------------------------
CBoneCache_Hydra();
// was constructor, but placement new is messy wrt memdebug - so cast & init instead
void Init(const bonecacheparams_t_Hydra &params, unsigned int size, short *pStudioToCached, short *pCachedToStudio, int cachedBoneCount);
void UpdateBones(const matrix3x4_t *pBoneToWorld, int numbones, float curtime);
matrix3x4_t *GetCachedBone(int studioIndex);
void ReadCachedBones(matrix3x4_t *pBoneToWorld);
void ReadCachedBonePointers(matrix3x4_t **bones, int numbones);
bool IsValid(float curtime, float dt = 0.1f);
public:
float m_timeValid;
int m_boneMask;
private:
matrix3x4_t *BoneArray();
short *StudioToCached();
short *CachedToStudio();
unsigned int m_size;
unsigned short m_cachedBoneCount;
unsigned short m_matrixOffset;
unsigned short m_cachedToStudioOffset;
unsigned short m_boneOutOffset;
};
CBoneCache_Hydra *Studio_GetBoneCache_Hydra(memhandle_t cacheHandle);
memhandle_t Studio_CreateBoneCache_Hydra(bonecacheparams_t_Hydra &params);
void Studio_DestroyBoneCache_Hydra(memhandle_t cacheHandle);
void Studio_InvalidateBoneCache_Hydra(memhandle_t cacheHandle);
// Given a ray, trace for an intersection with this studiomodel. Get the array of bones from StudioSetupHitboxBones
bool TraceToStudio_Hydra(class IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set, matrix3x4_t **hitboxbones, int fContentsMask, trace_t &trace);
void QuaternionSM_Hydra(float s, const Quaternion &p, const Quaternion &q, Quaternion &qt);
void QuaternionMA_Hydra(const Quaternion &p, float s, const Quaternion &q, Quaternion &qt);
bool Studio_PrefetchSequence_Hydra(const CStudioHdr *pStudioHdr, int iSequence);
#endif // BONE_SETUP_H