mirror of
https://github.com/Gigaslav/HL2Overcharged.git
synced 2026-01-01 09:48:38 +03:00
6049 lines
164 KiB
C++
6049 lines
164 KiB
C++
//========= Copyright Valve Corporation, All rights reserved. ============//
|
||
//
|
||
// Purpose:
|
||
//
|
||
// $NoKeywords: $
|
||
//
|
||
//===========================================================================//
|
||
|
||
#include "tier0/dbg.h"
|
||
#include "mathlib/mathlib.h"
|
||
#include "bone_setup.h"
|
||
#include <string.h>
|
||
|
||
#include "collisionutils.h"
|
||
#include "vstdlib/random.h"
|
||
#include "tier0/vprof.h"
|
||
#include "bone_accessor.h"
|
||
#include "mathlib/ssequaternion.h"
|
||
#include "bitvec.h"
|
||
#include "datamanager.h"
|
||
#include "convar.h"
|
||
#include "tier0/tslist.h"
|
||
#include "vphysics_interface.h"
|
||
#ifdef CLIENT_DLL
|
||
#include "posedebugger.h"
|
||
#endif
|
||
|
||
// memdbgon must be the last include file in a .cpp file!!!
|
||
#include "tier0/memdbgon.h"
|
||
|
||
class CBoneSetup
|
||
{
|
||
public:
|
||
CBoneSetup(const CStudioHdr *pStudioHdr, int boneMask, const float poseParameter[], IPoseDebugger *pPoseDebugger = NULL);
|
||
void InitPose(Vector pos[], Quaternion q[]);
|
||
void AccumulatePose(Vector pos[], Quaternion q[], int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext);
|
||
void CalcAutoplaySequences(Vector pos[], Quaternion q[], float flRealTime, CIKContext *pIKContext);
|
||
private:
|
||
void AddSequenceLayers(Vector pos[], Quaternion q[], mstudioseqdesc_t &seqdesc, int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext);
|
||
void AddLocalLayers(Vector pos[], Quaternion q[], mstudioseqdesc_t &seqdesc, int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext);
|
||
public:
|
||
const CStudioHdr *m_pStudioHdr;
|
||
int m_boneMask;
|
||
const float *m_flPoseParameter;
|
||
IPoseDebugger *m_pPoseDebugger;
|
||
};
|
||
|
||
// -----------------------------------------------------------------
|
||
template <typename T>
|
||
class CBoneSetupMemoryPool
|
||
{
|
||
public:
|
||
T *Alloc()
|
||
{
|
||
T *p = (T *)m_FreeBlocks.Pop();
|
||
if (!p)
|
||
{
|
||
p = new T[MAXSTUDIOBONES];
|
||
if (((size_t)p) % TSLIST_NODE_ALIGNMENT != 0)
|
||
{
|
||
DebuggerBreak();
|
||
}
|
||
}
|
||
|
||
return p;
|
||
}
|
||
|
||
void Free(T *p)
|
||
{
|
||
m_FreeBlocks.Push((TSLNodeBase_t *)p);
|
||
}
|
||
|
||
private:
|
||
CTSListBase m_FreeBlocks;
|
||
};
|
||
|
||
CBoneSetupMemoryPool<Quaternion> g_QaternionPool;
|
||
CBoneSetupMemoryPool<Vector> g_VectorPool;
|
||
CBoneSetupMemoryPool<matrix3x4_t> g_MatrixPool;
|
||
|
||
// -----------------------------------------------------------------
|
||
CBoneCache *CBoneCache::CreateResource(const bonecacheparams_t ¶ms)
|
||
{
|
||
short studioToCachedIndex[MAXSTUDIOBONES];
|
||
short cachedToStudioIndex[MAXSTUDIOBONES];
|
||
int cachedBoneCount = 0;
|
||
for (int i = 0; i < params.pStudioHdr->numbones(); i++)
|
||
{
|
||
// skip bones that aren't part of the boneMask (and aren't the root bone)
|
||
if (i != 0 && !(params.pStudioHdr->boneFlags(i) & params.boneMask))
|
||
{
|
||
studioToCachedIndex[i] = -1;
|
||
continue;
|
||
}
|
||
studioToCachedIndex[i] = cachedBoneCount;
|
||
cachedToStudioIndex[cachedBoneCount] = i;
|
||
cachedBoneCount++;
|
||
}
|
||
int tableSizeStudio = sizeof(short) * params.pStudioHdr->numbones();
|
||
int tableSizeCached = sizeof(short) * cachedBoneCount;
|
||
int matrixSize = sizeof(matrix3x4_t) * cachedBoneCount;
|
||
int size = (sizeof(CBoneCache) + tableSizeStudio + tableSizeCached + matrixSize + 3) & ~3;
|
||
|
||
CBoneCache *pMem = (CBoneCache *)malloc(size);
|
||
Construct(pMem);
|
||
pMem->Init(params, size, studioToCachedIndex, cachedToStudioIndex, cachedBoneCount);
|
||
return pMem;
|
||
}
|
||
|
||
unsigned int CBoneCache::EstimatedSize(const bonecacheparams_t ¶ms)
|
||
{
|
||
// conservative estimate - max size
|
||
return (params.pStudioHdr->numbones() * (sizeof(short) + sizeof(short) + sizeof(matrix3x4_t)) + 3) & ~3;
|
||
}
|
||
|
||
void CBoneCache::DestroyResource()
|
||
{
|
||
free(this);
|
||
}
|
||
|
||
|
||
CBoneCache::CBoneCache()
|
||
{
|
||
m_size = 0;
|
||
m_cachedBoneCount = 0;
|
||
}
|
||
|
||
void CBoneCache::Init(const bonecacheparams_t ¶ms, unsigned int size, short *pStudioToCached, short *pCachedToStudio, int cachedBoneCount)
|
||
{
|
||
m_cachedBoneCount = cachedBoneCount;
|
||
m_size = size;
|
||
m_timeValid = params.curtime;
|
||
m_boneMask = params.boneMask;
|
||
|
||
int studioTableSize = params.pStudioHdr->numbones() * sizeof(short);
|
||
m_cachedToStudioOffset = studioTableSize;
|
||
memcpy(StudioToCached(), pStudioToCached, studioTableSize);
|
||
|
||
int cachedTableSize = cachedBoneCount * sizeof(short);
|
||
memcpy(CachedToStudio(), pCachedToStudio, cachedTableSize);
|
||
|
||
m_matrixOffset = (m_cachedToStudioOffset + cachedTableSize + 3) & ~3;
|
||
|
||
UpdateBones(params.pBoneToWorld, params.pStudioHdr->numbones(), params.curtime);
|
||
}
|
||
|
||
void CBoneCache::UpdateBones(const matrix3x4_t *pBoneToWorld, int numbones, float curtime)
|
||
{
|
||
matrix3x4_t *pBones = BoneArray();
|
||
const short *pCachedToStudio = CachedToStudio();
|
||
|
||
for (int i = 0; i < m_cachedBoneCount; i++)
|
||
{
|
||
int index = pCachedToStudio[i];
|
||
MatrixCopy(pBoneToWorld[index], pBones[i]);
|
||
}
|
||
m_timeValid = curtime;
|
||
}
|
||
|
||
matrix3x4_t *CBoneCache::GetCachedBone(int studioIndex)
|
||
{
|
||
int cachedIndex = StudioToCached()[studioIndex];
|
||
if (cachedIndex >= 0)
|
||
{
|
||
return BoneArray() + cachedIndex;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
void CBoneCache::ReadCachedBones(matrix3x4_t *pBoneToWorld)
|
||
{
|
||
matrix3x4_t *pBones = BoneArray();
|
||
const short *pCachedToStudio = CachedToStudio();
|
||
for (int i = 0; i < m_cachedBoneCount; i++)
|
||
{
|
||
MatrixCopy(pBones[i], pBoneToWorld[pCachedToStudio[i]]);
|
||
}
|
||
}
|
||
|
||
void CBoneCache::ReadCachedBonePointers(matrix3x4_t **bones, int numbones)
|
||
{
|
||
memset(bones, 0, sizeof(matrix3x4_t *) * numbones);
|
||
matrix3x4_t *pBones = BoneArray();
|
||
const short *pCachedToStudio = CachedToStudio();
|
||
for (int i = 0; i < m_cachedBoneCount; i++)
|
||
{
|
||
bones[pCachedToStudio[i]] = pBones + i;
|
||
}
|
||
}
|
||
|
||
bool CBoneCache::IsValid(float curtime, float dt)
|
||
{
|
||
if (curtime - m_timeValid <= dt)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
|
||
// private functions
|
||
matrix3x4_t *CBoneCache::BoneArray()
|
||
{
|
||
return (matrix3x4_t *)((char *)(this + 1) + m_matrixOffset);
|
||
}
|
||
|
||
short *CBoneCache::StudioToCached()
|
||
{
|
||
return (short *)((char *)(this + 1));
|
||
}
|
||
|
||
short *CBoneCache::CachedToStudio()
|
||
{
|
||
return (short *)((char *)(this + 1) + m_cachedToStudioOffset);
|
||
}
|
||
|
||
// Construct a singleton
|
||
static CDataManager<CBoneCache, bonecacheparams_t, CBoneCache *, CThreadFastMutex> g_StudioBoneCache(128 * 1024L);
|
||
|
||
CBoneCache *Studio_GetBoneCache(memhandle_t cacheHandle)
|
||
{
|
||
AUTO_LOCK(g_StudioBoneCache.AccessMutex());
|
||
return g_StudioBoneCache.GetResource_NoLock(cacheHandle);
|
||
}
|
||
|
||
memhandle_t Studio_CreateBoneCache(bonecacheparams_t ¶ms)
|
||
{
|
||
AUTO_LOCK(g_StudioBoneCache.AccessMutex());
|
||
return g_StudioBoneCache.CreateResource(params);
|
||
}
|
||
|
||
void Studio_DestroyBoneCache(memhandle_t cacheHandle)
|
||
{
|
||
AUTO_LOCK(g_StudioBoneCache.AccessMutex());
|
||
g_StudioBoneCache.DestroyResource(cacheHandle);
|
||
}
|
||
|
||
void Studio_InvalidateBoneCache(memhandle_t cacheHandle)
|
||
{
|
||
AUTO_LOCK(g_StudioBoneCache.AccessMutex());
|
||
CBoneCache *pCache = g_StudioBoneCache.GetResource_NoLock(cacheHandle);
|
||
if (pCache)
|
||
{
|
||
pCache->m_timeValid = -1.0f;
|
||
}
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void BuildBoneChain(
|
||
const CStudioHdr *pStudioHdr,
|
||
const matrix3x4_t &rootxform,
|
||
const Vector pos[],
|
||
const Quaternion q[],
|
||
int iBone,
|
||
matrix3x4_t *pBoneToWorld)
|
||
{
|
||
CBoneBitList boneComputed;
|
||
BuildBoneChain(pStudioHdr, rootxform, pos, q, iBone, pBoneToWorld, boneComputed);
|
||
return;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: return a sub frame rotation for a single bone
|
||
//-----------------------------------------------------------------------------
|
||
void ExtractAnimValue(int frame, mstudioanimvalue_t *panimvalue, float scale, float &v1, float &v2)
|
||
{
|
||
if (!panimvalue)
|
||
{
|
||
v1 = v2 = 0;
|
||
return;
|
||
}
|
||
|
||
// Avoids a crash reading off the end of the data
|
||
// There is probably a better long-term solution; Ken is going to look into it.
|
||
if ((panimvalue->num.total == 1) && (panimvalue->num.valid == 1))
|
||
{
|
||
v1 = v2 = panimvalue[1].value * scale;
|
||
return;
|
||
}
|
||
|
||
int k = frame;
|
||
|
||
// find the data list that has the frame
|
||
while (panimvalue->num.total <= k)
|
||
{
|
||
k -= panimvalue->num.total;
|
||
panimvalue += panimvalue->num.valid + 1;
|
||
if (panimvalue->num.total == 0)
|
||
{
|
||
Assert(0); // running off the end of the animation stream is bad
|
||
v1 = v2 = 0;
|
||
return;
|
||
}
|
||
}
|
||
if (panimvalue->num.valid > k)
|
||
{
|
||
// has valid animation data
|
||
v1 = panimvalue[k + 1].value * scale;
|
||
|
||
if (panimvalue->num.valid > k + 1)
|
||
{
|
||
// has valid animation blend data
|
||
v2 = panimvalue[k + 2].value * scale;
|
||
}
|
||
else
|
||
{
|
||
if (panimvalue->num.total > k + 1)
|
||
{
|
||
// data repeats, no blend
|
||
v2 = v1;
|
||
}
|
||
else
|
||
{
|
||
// pull blend from first data block in next list
|
||
v2 = panimvalue[panimvalue->num.valid + 2].value * scale;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
// get last valid data block
|
||
v1 = panimvalue[panimvalue->num.valid].value * scale;
|
||
if (panimvalue->num.total > k + 1)
|
||
{
|
||
// data repeats, no blend
|
||
v2 = v1;
|
||
}
|
||
else
|
||
{
|
||
// pull blend from first data block in next list
|
||
v2 = panimvalue[panimvalue->num.valid + 2].value * scale;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void ExtractAnimValue(int frame, mstudioanimvalue_t *panimvalue, float scale, float &v1)
|
||
{
|
||
if (!panimvalue)
|
||
{
|
||
v1 = 0;
|
||
return;
|
||
}
|
||
|
||
int k = frame;
|
||
|
||
while (panimvalue->num.total <= k)
|
||
{
|
||
k -= panimvalue->num.total;
|
||
panimvalue += panimvalue->num.valid + 1;
|
||
if (panimvalue->num.total == 0)
|
||
{
|
||
Assert(0); // running off the end of the animation stream is bad
|
||
v1 = 0;
|
||
return;
|
||
}
|
||
}
|
||
if (panimvalue->num.valid > k)
|
||
{
|
||
v1 = panimvalue[k + 1].value * scale;
|
||
}
|
||
else
|
||
{
|
||
// get last valid data block
|
||
v1 = panimvalue[panimvalue->num.valid].value * scale;
|
||
}
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: return a sub frame rotation for a single bone
|
||
//-----------------------------------------------------------------------------
|
||
void CalcBoneQuaternion(int frame, float s,
|
||
const Quaternion &baseQuat, const RadianEuler &baseRot, const Vector &baseRotScale,
|
||
int iBaseFlags, const Quaternion &baseAlignment,
|
||
const mstudioanim_t *panim, Quaternion &q)
|
||
{
|
||
if (panim->flags & STUDIO_ANIM_RAWROT)
|
||
{
|
||
q = *(panim->pQuat48());
|
||
Assert(q.IsValid());
|
||
return;
|
||
}
|
||
|
||
if (panim->flags & STUDIO_ANIM_RAWROT2)
|
||
{
|
||
q = *(panim->pQuat64());
|
||
Assert(q.IsValid());
|
||
return;
|
||
}
|
||
|
||
if (!(panim->flags & STUDIO_ANIM_ANIMROT))
|
||
{
|
||
if (panim->flags & STUDIO_ANIM_DELTA)
|
||
{
|
||
q.Init(0.0f, 0.0f, 0.0f, 1.0f);
|
||
}
|
||
else
|
||
{
|
||
q = baseQuat;
|
||
}
|
||
return;
|
||
}
|
||
|
||
mstudioanim_valueptr_t *pValuesPtr = panim->pRotV();
|
||
|
||
if (s > 0.001f)
|
||
{
|
||
QuaternionAligned q1, q2;
|
||
RadianEuler angle1, angle2;
|
||
|
||
ExtractAnimValue(frame, pValuesPtr->pAnimvalue(0), baseRotScale.x, angle1.x, angle2.x);
|
||
ExtractAnimValue(frame, pValuesPtr->pAnimvalue(1), baseRotScale.y, angle1.y, angle2.y);
|
||
ExtractAnimValue(frame, pValuesPtr->pAnimvalue(2), baseRotScale.z, angle1.z, angle2.z);
|
||
|
||
if (!(panim->flags & STUDIO_ANIM_DELTA))
|
||
{
|
||
angle1.x = angle1.x + baseRot.x;
|
||
angle1.y = angle1.y + baseRot.y;
|
||
angle1.z = angle1.z + baseRot.z;
|
||
angle2.x = angle2.x + baseRot.x;
|
||
angle2.y = angle2.y + baseRot.y;
|
||
angle2.z = angle2.z + baseRot.z;
|
||
}
|
||
|
||
Assert(angle1.IsValid() && angle2.IsValid());
|
||
if (angle1.x != angle2.x || angle1.y != angle2.y || angle1.z != angle2.z)
|
||
{
|
||
AngleQuaternion(angle1, q1);
|
||
AngleQuaternion(angle2, q2);
|
||
|
||
#ifdef _X360
|
||
fltx4 q1simd, q2simd, qsimd;
|
||
q1simd = LoadAlignedSIMD(q1);
|
||
q2simd = LoadAlignedSIMD(q2);
|
||
qsimd = QuaternionBlendSIMD(q1simd, q2simd, s);
|
||
StoreUnalignedSIMD(q.Base(), qsimd);
|
||
#else
|
||
QuaternionBlend(q1, q2, s, q);
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
AngleQuaternion(angle1, q);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
RadianEuler angle;
|
||
|
||
ExtractAnimValue(frame, pValuesPtr->pAnimvalue(0), baseRotScale.x, angle.x);
|
||
ExtractAnimValue(frame, pValuesPtr->pAnimvalue(1), baseRotScale.y, angle.y);
|
||
ExtractAnimValue(frame, pValuesPtr->pAnimvalue(2), baseRotScale.z, angle.z);
|
||
|
||
if (!(panim->flags & STUDIO_ANIM_DELTA))
|
||
{
|
||
angle.x = angle.x + baseRot.x;
|
||
angle.y = angle.y + baseRot.y;
|
||
angle.z = angle.z + baseRot.z;
|
||
}
|
||
|
||
Assert(angle.IsValid());
|
||
AngleQuaternion(angle, q);
|
||
}
|
||
|
||
Assert(q.IsValid());
|
||
|
||
// align to unified bone
|
||
if (!(panim->flags & STUDIO_ANIM_DELTA) && (iBaseFlags & BONE_FIXED_ALIGNMENT))
|
||
{
|
||
QuaternionAlign(baseAlignment, q, q);
|
||
}
|
||
}
|
||
|
||
inline void CalcBoneQuaternion(int frame, float s,
|
||
const mstudiobone_t *pBone,
|
||
const mstudiolinearbone_t *pLinearBones,
|
||
const mstudioanim_t *panim, Quaternion &q)
|
||
{
|
||
if (pLinearBones)
|
||
{
|
||
CalcBoneQuaternion(frame, s, pLinearBones->quat(panim->bone), pLinearBones->rot(panim->bone), pLinearBones->rotscale(panim->bone), pLinearBones->flags(panim->bone), pLinearBones->qalignment(panim->bone), panim, q);
|
||
}
|
||
else
|
||
{
|
||
CalcBoneQuaternion(frame, s, pBone->quat, pBone->rot, pBone->rotscale, pBone->flags, pBone->qAlignment, panim, q);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: return a sub frame position for a single bone
|
||
//-----------------------------------------------------------------------------
|
||
void CalcBonePosition(int frame, float s,
|
||
const Vector &basePos, const Vector &baseBoneScale,
|
||
const mstudioanim_t *panim, Vector &pos)
|
||
{
|
||
if (panim->flags & STUDIO_ANIM_RAWPOS)
|
||
{
|
||
pos = *(panim->pPos());
|
||
Assert(pos.IsValid());
|
||
|
||
return;
|
||
}
|
||
else if (!(panim->flags & STUDIO_ANIM_ANIMPOS))
|
||
{
|
||
if (panim->flags & STUDIO_ANIM_DELTA)
|
||
{
|
||
pos.Init(0.0f, 0.0f, 0.0f);
|
||
}
|
||
else
|
||
{
|
||
pos = basePos;
|
||
}
|
||
return;
|
||
}
|
||
|
||
mstudioanim_valueptr_t *pPosV = panim->pPosV();
|
||
int j;
|
||
|
||
if (s > 0.001f)
|
||
{
|
||
float v1, v2;
|
||
for (j = 0; j < 3; j++)
|
||
{
|
||
ExtractAnimValue(frame, pPosV->pAnimvalue(j), baseBoneScale[j], v1, v2);
|
||
pos[j] = v1 * (1.0 - s) + v2 * s;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (j = 0; j < 3; j++)
|
||
{
|
||
ExtractAnimValue(frame, pPosV->pAnimvalue(j), baseBoneScale[j], pos[j]);
|
||
}
|
||
}
|
||
|
||
if (!(panim->flags & STUDIO_ANIM_DELTA))
|
||
{
|
||
pos.x = pos.x + basePos.x;
|
||
pos.y = pos.y + basePos.y;
|
||
pos.z = pos.z + basePos.z;
|
||
}
|
||
|
||
Assert(pos.IsValid());
|
||
}
|
||
|
||
|
||
inline void CalcBonePosition(int frame, float s,
|
||
const mstudiobone_t *pBone,
|
||
const mstudiolinearbone_t *pLinearBones,
|
||
const mstudioanim_t *panim, Vector &pos)
|
||
{
|
||
if (pLinearBones)
|
||
{
|
||
CalcBonePosition(frame, s, pLinearBones->pos(panim->bone), pLinearBones->posscale(panim->bone), panim, pos);
|
||
}
|
||
else
|
||
{
|
||
CalcBonePosition(frame, s, pBone->pos, pBone->posscale, panim, pos);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
void SetupSingleBoneMatrix(
|
||
CStudioHdr *pOwnerHdr,
|
||
int nSequence,
|
||
int iFrame,
|
||
int iBone,
|
||
matrix3x4_t &mBoneLocal)
|
||
{
|
||
mstudioseqdesc_t &seqdesc = pOwnerHdr->pSeqdesc(nSequence);
|
||
mstudioanimdesc_t &animdesc = pOwnerHdr->pAnimdesc(seqdesc.anim(0, 0));
|
||
int iLocalFrame = iFrame;
|
||
mstudioanim_t *panim = animdesc.pAnim(&iLocalFrame);
|
||
float s = 0;
|
||
mstudiobone_t *pbone = pOwnerHdr->pBone(iBone);
|
||
|
||
Quaternion boneQuat;
|
||
Vector bonePos;
|
||
|
||
// search for bone
|
||
while (panim && panim->bone != iBone)
|
||
{
|
||
panim = panim->pNext();
|
||
}
|
||
|
||
// look up animation if found, if not, initialize
|
||
if (panim && seqdesc.weight(iBone) > 0)
|
||
{
|
||
CalcBoneQuaternion(iLocalFrame, s, pbone, NULL, panim, boneQuat);
|
||
CalcBonePosition(iLocalFrame, s, pbone, NULL, panim, bonePos);
|
||
}
|
||
else if (animdesc.flags & STUDIO_DELTA)
|
||
{
|
||
boneQuat.Init(0.0f, 0.0f, 0.0f, 1.0f);
|
||
bonePos.Init(0.0f, 0.0f, 0.0f);
|
||
}
|
||
else
|
||
{
|
||
boneQuat = pbone->quat;
|
||
bonePos = pbone->pos;
|
||
}
|
||
|
||
QuaternionMatrix(boneQuat, bonePos, mBoneLocal);
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
static void CalcDecompressedAnimation(const mstudiocompressedikerror_t *pCompressed, int iFrame, float fraq, Vector &pos, Quaternion &q)
|
||
{
|
||
if (fraq > 0.0001f)
|
||
{
|
||
Vector p1, p2;
|
||
ExtractAnimValue(iFrame, pCompressed->pAnimvalue(0), pCompressed->scale[0], p1.x, p2.x);
|
||
ExtractAnimValue(iFrame, pCompressed->pAnimvalue(1), pCompressed->scale[1], p1.y, p2.y);
|
||
ExtractAnimValue(iFrame, pCompressed->pAnimvalue(2), pCompressed->scale[2], p1.z, p2.z);
|
||
pos = p1 * (1 - fraq) + p2 * fraq;
|
||
|
||
Quaternion q1, q2;
|
||
RadianEuler angle1, angle2;
|
||
ExtractAnimValue(iFrame, pCompressed->pAnimvalue(3), pCompressed->scale[3], angle1.x, angle2.x);
|
||
ExtractAnimValue(iFrame, pCompressed->pAnimvalue(4), pCompressed->scale[4], angle1.y, angle2.y);
|
||
ExtractAnimValue(iFrame, pCompressed->pAnimvalue(5), pCompressed->scale[5], angle1.z, angle2.z);
|
||
|
||
if (angle1.x != angle2.x || angle1.y != angle2.y || angle1.z != angle2.z)
|
||
{
|
||
AngleQuaternion(angle1, q1);
|
||
AngleQuaternion(angle2, q2);
|
||
QuaternionBlend(q1, q2, fraq, q);
|
||
}
|
||
else
|
||
{
|
||
AngleQuaternion(angle1, q);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
ExtractAnimValue(iFrame, pCompressed->pAnimvalue(0), pCompressed->scale[0], pos.x);
|
||
ExtractAnimValue(iFrame, pCompressed->pAnimvalue(1), pCompressed->scale[1], pos.y);
|
||
ExtractAnimValue(iFrame, pCompressed->pAnimvalue(2), pCompressed->scale[2], pos.z);
|
||
|
||
RadianEuler angle;
|
||
ExtractAnimValue(iFrame, pCompressed->pAnimvalue(3), pCompressed->scale[3], angle.x);
|
||
ExtractAnimValue(iFrame, pCompressed->pAnimvalue(4), pCompressed->scale[4], angle.y);
|
||
ExtractAnimValue(iFrame, pCompressed->pAnimvalue(5), pCompressed->scale[5], angle.z);
|
||
|
||
AngleQuaternion(angle, q);
|
||
}
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: translate animations done in a non-standard parent space
|
||
//-----------------------------------------------------------------------------
|
||
static void CalcLocalHierarchyAnimation(
|
||
const CStudioHdr *pStudioHdr,
|
||
matrix3x4_t *boneToWorld,
|
||
CBoneBitList &boneComputed,
|
||
Vector *pos,
|
||
Quaternion *q,
|
||
//const mstudioanimdesc_t &animdesc,
|
||
const mstudiobone_t *pbone,
|
||
mstudiolocalhierarchy_t *pHierarchy,
|
||
int iBone,
|
||
int iNewParent,
|
||
float cycle,
|
||
int iFrame,
|
||
float flFraq,
|
||
int boneMask
|
||
)
|
||
{
|
||
#ifdef STAGING_ONLY
|
||
Assert(iNewParent == -1 || (iNewParent >= 0 && iNewParent < MAXSTUDIOBONES));
|
||
Assert(iBone > 0);
|
||
Assert(iBone < MAXSTUDIOBONES);
|
||
#endif // STAGING_ONLY
|
||
|
||
Vector localPos;
|
||
Quaternion localQ;
|
||
|
||
// make fake root transform
|
||
static ALIGN16 matrix3x4_t rootXform ALIGN16_POST(1.0f, 0, 0, 0, 0, 1.0f, 0, 0, 0, 0, 1.0f, 0);
|
||
|
||
// FIXME: missing check to see if seq has a weight for this bone
|
||
float weight = 1.0f;
|
||
|
||
// check to see if there's a ramp on the influence
|
||
if (pHierarchy->tail - pHierarchy->peak < 1.0f)
|
||
{
|
||
float index = cycle;
|
||
|
||
if (pHierarchy->end > 1.0f && index < pHierarchy->start)
|
||
index += 1.0f;
|
||
|
||
if (index < pHierarchy->start)
|
||
return;
|
||
if (index >= pHierarchy->end)
|
||
return;
|
||
|
||
if (index < pHierarchy->peak && pHierarchy->start != pHierarchy->peak)
|
||
{
|
||
weight = (index - pHierarchy->start) / (pHierarchy->peak - pHierarchy->start);
|
||
}
|
||
else if (index > pHierarchy->tail && pHierarchy->end != pHierarchy->tail)
|
||
{
|
||
weight = (pHierarchy->end - index) / (pHierarchy->end - pHierarchy->tail);
|
||
}
|
||
|
||
weight = SimpleSpline(weight);
|
||
}
|
||
|
||
CalcDecompressedAnimation(pHierarchy->pLocalAnim(), iFrame - pHierarchy->iStart, flFraq, localPos, localQ);
|
||
|
||
BuildBoneChain(pStudioHdr, rootXform, pos, q, iBone, boneToWorld, boneComputed);
|
||
|
||
matrix3x4_t localXform;
|
||
AngleMatrix(localQ, localPos, localXform);
|
||
|
||
if (iNewParent != -1)
|
||
{
|
||
BuildBoneChain(pStudioHdr, rootXform, pos, q, iNewParent, boneToWorld, boneComputed);
|
||
ConcatTransforms(boneToWorld[iNewParent], localXform, boneToWorld[iBone]);
|
||
}
|
||
else
|
||
{
|
||
boneToWorld[iBone] = localXform;
|
||
}
|
||
|
||
// back solve
|
||
Vector p1;
|
||
Quaternion q1;
|
||
int n = pbone[iBone].parent;
|
||
if (n == -1)
|
||
{
|
||
if (weight == 1.0f)
|
||
{
|
||
MatrixAngles(boneToWorld[iBone], q[iBone], pos[iBone]);
|
||
}
|
||
else
|
||
{
|
||
MatrixAngles(boneToWorld[iBone], q1, p1);
|
||
QuaternionSlerp(q[iBone], q1, weight, q[iBone]);
|
||
pos[iBone] = Lerp(weight, p1, pos[iBone]);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
matrix3x4_t worldToBone;
|
||
MatrixInvert(boneToWorld[n], worldToBone);
|
||
|
||
matrix3x4_t local;
|
||
ConcatTransforms(worldToBone, boneToWorld[iBone], local);
|
||
if (weight == 1.0f)
|
||
{
|
||
MatrixAngles(local, q[iBone], pos[iBone]);
|
||
}
|
||
else
|
||
{
|
||
MatrixAngles(local, q1, p1);
|
||
QuaternionSlerp(q[iBone], q1, weight, q[iBone]);
|
||
pos[iBone] = Lerp(weight, p1, pos[iBone]);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Calc Zeroframe Data
|
||
//-----------------------------------------------------------------------------
|
||
|
||
static void CalcZeroframeData(const CStudioHdr *pStudioHdr, const studiohdr_t *pAnimStudioHdr, const virtualgroup_t *pAnimGroup, const mstudiobone_t *pAnimbone, mstudioanimdesc_t &animdesc, float fFrame, Vector *pos, Quaternion *q, int boneMask, float flWeight)
|
||
{
|
||
byte *pData = animdesc.pZeroFrameData();
|
||
|
||
if (!pData)
|
||
return;
|
||
|
||
int i, j;
|
||
|
||
// Msg("zeroframe %s\n", animdesc.pszName() );
|
||
if (animdesc.zeroframecount == 1)
|
||
{
|
||
for (j = 0; j < pAnimStudioHdr->numbones; j++)
|
||
{
|
||
if (pAnimGroup)
|
||
i = pAnimGroup->masterBone[j];
|
||
else
|
||
i = j;
|
||
|
||
if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_POS)
|
||
{
|
||
if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask))
|
||
{
|
||
Vector p = *(Vector48 *)pData;
|
||
pos[i] = pos[i] * (1.0f - flWeight) + p * flWeight;
|
||
Assert(pos[i].IsValid());
|
||
}
|
||
pData += sizeof(Vector48);
|
||
}
|
||
if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_ROT)
|
||
{
|
||
if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask))
|
||
{
|
||
Quaternion q0 = *(Quaternion64 *)pData;
|
||
QuaternionBlend(q[i], q0, flWeight, q[i]);
|
||
Assert(q[i].IsValid());
|
||
}
|
||
pData += sizeof(Quaternion64);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
float s1;
|
||
int index = fFrame / animdesc.zeroframespan;
|
||
if (index >= animdesc.zeroframecount - 1)
|
||
{
|
||
index = animdesc.zeroframecount - 2;
|
||
s1 = 1.0f;
|
||
}
|
||
else
|
||
{
|
||
s1 = clamp((fFrame - index * animdesc.zeroframespan) / animdesc.zeroframespan, 0.0f, 1.0f);
|
||
}
|
||
int i0 = max(index - 1, 0);
|
||
int i1 = index;
|
||
int i2 = min(index + 1, animdesc.zeroframecount - 1);
|
||
for (j = 0; j < pAnimStudioHdr->numbones; j++)
|
||
{
|
||
if (pAnimGroup)
|
||
i = pAnimGroup->masterBone[j];
|
||
else
|
||
i = j;
|
||
|
||
if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_POS)
|
||
{
|
||
if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask))
|
||
{
|
||
Vector p0 = *(((Vector48 *)pData) + i0);
|
||
Vector p1 = *(((Vector48 *)pData) + i1);
|
||
Vector p2 = *(((Vector48 *)pData) + i2);
|
||
Vector p3;
|
||
Hermite_Spline(p0, p1, p2, s1, p3);
|
||
pos[i] = pos[i] * (1.0f - flWeight) + p3 * flWeight;
|
||
Assert(pos[i].IsValid());
|
||
}
|
||
pData += sizeof(Vector48) * animdesc.zeroframecount;
|
||
}
|
||
if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_ROT)
|
||
{
|
||
if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask))
|
||
{
|
||
Quaternion q0 = *(((Quaternion64 *)pData) + i0);
|
||
Quaternion q1 = *(((Quaternion64 *)pData) + i1);
|
||
Quaternion q2 = *(((Quaternion64 *)pData) + i2);
|
||
if (flWeight == 1.0f)
|
||
{
|
||
Hermite_Spline(q0, q1, q2, s1, q[i]);
|
||
}
|
||
else
|
||
{
|
||
Quaternion q3;
|
||
Hermite_Spline(q0, q1, q2, s1, q3);
|
||
QuaternionBlend(q[i], q3, flWeight, q[i]);
|
||
}
|
||
Assert(q[i].IsValid());
|
||
}
|
||
pData += sizeof(Quaternion64) * animdesc.zeroframecount;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Find and decode a sub-frame of animation, remapping the skeleton bone indexes
|
||
//-----------------------------------------------------------------------------
|
||
static void CalcVirtualAnimation(virtualmodel_t *pVModel, const CStudioHdr *pStudioHdr, Vector *pos, Quaternion *q,
|
||
mstudioseqdesc_t &seqdesc, int sequence, int animation,
|
||
float cycle, int boneMask)
|
||
{
|
||
int i, j, k;
|
||
|
||
const mstudiobone_t *pbone;
|
||
const virtualgroup_t *pSeqGroup;
|
||
const studiohdr_t *pSeqStudioHdr;
|
||
const mstudiolinearbone_t *pSeqLinearBones;
|
||
const mstudiobone_t *pSeqbone;
|
||
const mstudioanim_t *panim;
|
||
const studiohdr_t *pAnimStudioHdr;
|
||
const mstudiolinearbone_t *pAnimLinearBones;
|
||
const mstudiobone_t *pAnimbone;
|
||
const virtualgroup_t *pAnimGroup;
|
||
|
||
pSeqGroup = pVModel->pSeqGroup(sequence);
|
||
int baseanimation = pStudioHdr->iRelativeAnim(sequence, animation);
|
||
mstudioanimdesc_t &animdesc = ((CStudioHdr *)pStudioHdr)->pAnimdesc(baseanimation);
|
||
pSeqStudioHdr = ((CStudioHdr *)pStudioHdr)->pSeqStudioHdr(sequence);
|
||
pSeqLinearBones = pSeqStudioHdr->pLinearBones();
|
||
pSeqbone = pSeqStudioHdr->pBone(0);
|
||
pAnimGroup = pVModel->pAnimGroup(baseanimation);
|
||
pAnimStudioHdr = ((CStudioHdr *)pStudioHdr)->pAnimStudioHdr(baseanimation);
|
||
pAnimLinearBones = pAnimStudioHdr->pLinearBones();
|
||
pAnimbone = pAnimStudioHdr->pBone(0);
|
||
|
||
int iFrame;
|
||
float s;
|
||
|
||
float fFrame = cycle * (animdesc.numframes - 1);
|
||
|
||
iFrame = (int)fFrame;
|
||
s = (fFrame - iFrame);
|
||
|
||
int iLocalFrame = iFrame;
|
||
float flStall;
|
||
panim = animdesc.pAnim(&iLocalFrame, flStall);
|
||
|
||
float *pweight = seqdesc.pBoneweight(0);
|
||
pbone = pStudioHdr->pBone(0);
|
||
|
||
for (i = 0; i < pStudioHdr->numbones(); i++)
|
||
{
|
||
if (pStudioHdr->boneFlags(i) & boneMask)
|
||
{
|
||
int j = pSeqGroup->boneMap[i];
|
||
if (j >= 0 && pweight[j] > 0.0f)
|
||
{
|
||
if (animdesc.flags & STUDIO_DELTA)
|
||
{
|
||
q[i].Init(0.0f, 0.0f, 0.0f, 1.0f);
|
||
pos[i].Init(0.0f, 0.0f, 0.0f);
|
||
}
|
||
else if (pSeqLinearBones)
|
||
{
|
||
q[i] = pSeqLinearBones->quat(j);
|
||
pos[i] = pSeqLinearBones->pos(j);
|
||
}
|
||
else
|
||
{
|
||
q[i] = pSeqbone[j].quat;
|
||
pos[i] = pSeqbone[j].pos;
|
||
}
|
||
#ifdef STUDIO_ENABLE_PERF_COUNTERS
|
||
pStudioHdr->m_nPerfUsedBones++;
|
||
#endif
|
||
}
|
||
}
|
||
}
|
||
|
||
// if the animation isn't available, look for the zero frame cache
|
||
if (!panim)
|
||
{
|
||
CalcZeroframeData(((CStudioHdr *)pStudioHdr), pAnimStudioHdr, pAnimGroup, pAnimbone, animdesc, fFrame, pos, q, boneMask, 1.0);
|
||
return;
|
||
}
|
||
|
||
// FIXME: change encoding so that bone -1 is never the case
|
||
while (panim && panim->bone < 255)
|
||
{
|
||
j = pAnimGroup->masterBone[panim->bone];
|
||
if (j >= 0 && (pStudioHdr->boneFlags(j) & boneMask))
|
||
{
|
||
k = pSeqGroup->boneMap[j];
|
||
|
||
if (k >= 0 && pweight[k] > 0.0f)
|
||
{
|
||
CalcBoneQuaternion(iLocalFrame, s, &pAnimbone[panim->bone], pAnimLinearBones, panim, q[j]);
|
||
CalcBonePosition(iLocalFrame, s, &pAnimbone[panim->bone], pAnimLinearBones, panim, pos[j]);
|
||
#ifdef STUDIO_ENABLE_PERF_COUNTERS
|
||
pStudioHdr->m_nPerfAnimatedBones++;
|
||
#endif
|
||
}
|
||
}
|
||
panim = panim->pNext();
|
||
}
|
||
|
||
// cross fade in previous zeroframe data
|
||
if (flStall > 0.0f)
|
||
{
|
||
CalcZeroframeData(pStudioHdr, pAnimStudioHdr, pAnimGroup, pAnimbone, animdesc, fFrame, pos, q, boneMask, flStall);
|
||
}
|
||
|
||
// calculate a local hierarchy override
|
||
if (animdesc.numlocalhierarchy)
|
||
{
|
||
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
|
||
CBoneBitList boneComputed;
|
||
|
||
int i;
|
||
for (i = 0; i < animdesc.numlocalhierarchy; i++)
|
||
{
|
||
mstudiolocalhierarchy_t *pHierarchy = animdesc.pHierarchy(i);
|
||
|
||
if (!pHierarchy)
|
||
break;
|
||
|
||
int iBone = pAnimGroup->masterBone[pHierarchy->iBone];
|
||
if (iBone >= 0 && (pStudioHdr->boneFlags(iBone) & boneMask))
|
||
{
|
||
if (pHierarchy->iNewParent != -1)
|
||
{
|
||
int iNewParent = pAnimGroup->masterBone[pHierarchy->iNewParent];
|
||
if (iNewParent >= 0 && (pStudioHdr->boneFlags(iNewParent) & boneMask))
|
||
{
|
||
CalcLocalHierarchyAnimation(pStudioHdr, boneToWorld, boneComputed, pos, q, pbone, pHierarchy, iBone, iNewParent, cycle, iFrame, s, boneMask);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
CalcLocalHierarchyAnimation(pStudioHdr, boneToWorld, boneComputed, pos, q, pbone, pHierarchy, iBone, -1, cycle, iFrame, s, boneMask);
|
||
}
|
||
}
|
||
}
|
||
|
||
g_MatrixPool.Free(boneToWorld);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Find and decode a sub-frame of animation
|
||
//-----------------------------------------------------------------------------
|
||
|
||
static void CalcAnimation(const CStudioHdr *pStudioHdr, Vector *pos, Quaternion *q,
|
||
mstudioseqdesc_t &seqdesc,
|
||
int sequence, int animation,
|
||
float cycle, int boneMask)
|
||
{
|
||
#ifdef STUDIO_ENABLE_PERF_COUNTERS
|
||
pStudioHdr->m_nPerfAnimationLayers++;
|
||
#endif
|
||
|
||
virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel();
|
||
|
||
if (pVModel)
|
||
{
|
||
CalcVirtualAnimation(pVModel, pStudioHdr, pos, q, seqdesc, sequence, animation, cycle, boneMask);
|
||
return;
|
||
}
|
||
|
||
mstudioanimdesc_t &animdesc = ((CStudioHdr *)pStudioHdr)->pAnimdesc(animation);
|
||
mstudiobone_t *pbone = pStudioHdr->pBone(0);
|
||
const mstudiolinearbone_t *pLinearBones = pStudioHdr->pLinearBones();
|
||
|
||
int i;
|
||
int iFrame;
|
||
float s;
|
||
|
||
float fFrame = cycle * (animdesc.numframes - 1);
|
||
|
||
iFrame = (int)fFrame;
|
||
s = (fFrame - iFrame);
|
||
|
||
int iLocalFrame = iFrame;
|
||
float flStall;
|
||
mstudioanim_t *panim = animdesc.pAnim(&iLocalFrame, flStall);
|
||
|
||
float *pweight = seqdesc.pBoneweight(0);
|
||
|
||
// if the animation isn't available, look for the zero frame cache
|
||
if (!panim)
|
||
{
|
||
// Msg("zeroframe %s\n", animdesc.pszName() );
|
||
// pre initialize
|
||
for (i = 0; i < pStudioHdr->numbones(); i++, pbone++, pweight++)
|
||
{
|
||
if (*pweight > 0 && (pStudioHdr->boneFlags(i) & boneMask))
|
||
{
|
||
if (animdesc.flags & STUDIO_DELTA)
|
||
{
|
||
q[i].Init(0.0f, 0.0f, 0.0f, 1.0f);
|
||
pos[i].Init(0.0f, 0.0f, 0.0f);
|
||
}
|
||
else
|
||
{
|
||
q[i] = pbone->quat;
|
||
pos[i] = pbone->pos;
|
||
}
|
||
}
|
||
}
|
||
|
||
CalcZeroframeData(pStudioHdr, pStudioHdr->GetRenderHdr(), NULL, pStudioHdr->pBone(0), animdesc, fFrame, pos, q, boneMask, 1.0);
|
||
|
||
return;
|
||
}
|
||
|
||
// BUGBUG: the sequence, the anim, and the model can have all different bone mappings.
|
||
for (i = 0; i < pStudioHdr->numbones(); i++, pbone++, pweight++)
|
||
{
|
||
if (panim && panim->bone == i)
|
||
{
|
||
if (*pweight > 0 && (pStudioHdr->boneFlags(i) & boneMask))
|
||
{
|
||
CalcBoneQuaternion(iLocalFrame, s, pbone, pLinearBones, panim, q[i]);
|
||
CalcBonePosition(iLocalFrame, s, pbone, pLinearBones, panim, pos[i]);
|
||
#ifdef STUDIO_ENABLE_PERF_COUNTERS
|
||
pStudioHdr->m_nPerfAnimatedBones++;
|
||
pStudioHdr->m_nPerfUsedBones++;
|
||
#endif
|
||
}
|
||
panim = panim->pNext();
|
||
}
|
||
else if (*pweight > 0 && (pStudioHdr->boneFlags(i) & boneMask))
|
||
{
|
||
if (animdesc.flags & STUDIO_DELTA)
|
||
{
|
||
q[i].Init(0.0f, 0.0f, 0.0f, 1.0f);
|
||
pos[i].Init(0.0f, 0.0f, 0.0f);
|
||
}
|
||
else
|
||
{
|
||
q[i] = pbone->quat;
|
||
pos[i] = pbone->pos;
|
||
}
|
||
#ifdef STUDIO_ENABLE_PERF_COUNTERS
|
||
pStudioHdr->m_nPerfUsedBones++;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
// cross fade in previous zeroframe data
|
||
if (flStall > 0.0f)
|
||
{
|
||
CalcZeroframeData(pStudioHdr, pStudioHdr->GetRenderHdr(), NULL, pStudioHdr->pBone(0), animdesc, fFrame, pos, q, boneMask, flStall);
|
||
}
|
||
|
||
if (animdesc.numlocalhierarchy)
|
||
{
|
||
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
|
||
CBoneBitList boneComputed;
|
||
|
||
int i;
|
||
for (i = 0; i < animdesc.numlocalhierarchy; i++)
|
||
{
|
||
mstudiolocalhierarchy_t *pHierarchy = animdesc.pHierarchy(i);
|
||
|
||
if (!pHierarchy)
|
||
break;
|
||
|
||
if (pStudioHdr->boneFlags(pHierarchy->iBone) & boneMask)
|
||
{
|
||
if (pStudioHdr->boneFlags(pHierarchy->iNewParent) & boneMask)
|
||
{
|
||
CalcLocalHierarchyAnimation(pStudioHdr, boneToWorld, boneComputed, pos, q, pbone, pHierarchy, pHierarchy->iBone, pHierarchy->iNewParent, cycle, iFrame, s, boneMask);
|
||
}
|
||
}
|
||
}
|
||
|
||
g_MatrixPool.Free(boneToWorld);
|
||
}
|
||
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: qt = ( s * p ) * q
|
||
//-----------------------------------------------------------------------------
|
||
void QuaternionSM(float s, const Quaternion &p, const Quaternion &q, Quaternion &qt)
|
||
{
|
||
Quaternion p1, q1;
|
||
|
||
QuaternionScale(p, s, p1);
|
||
QuaternionMult(p1, q, q1);
|
||
QuaternionNormalize(q1);
|
||
qt[0] = q1[0];
|
||
qt[1] = q1[1];
|
||
qt[2] = q1[2];
|
||
qt[3] = q1[3];
|
||
}
|
||
|
||
#if ALLOW_SIMD_QUATERNION_MATH
|
||
FORCEINLINE fltx4 QuaternionSMSIMD(float s, const fltx4 &p, const fltx4 &q)
|
||
{
|
||
fltx4 p1, q1, result;
|
||
p1 = QuaternionScaleSIMD(p, s);
|
||
q1 = QuaternionMultSIMD(p1, q);
|
||
result = QuaternionNormalizeSIMD(q1);
|
||
return result;
|
||
}
|
||
#endif
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: qt = p * ( s * q )
|
||
//-----------------------------------------------------------------------------
|
||
void QuaternionMA(const Quaternion &p, float s, const Quaternion &q, Quaternion &qt)
|
||
{
|
||
Quaternion p1, q1;
|
||
|
||
QuaternionScale(q, s, q1);
|
||
QuaternionMult(p, q1, p1);
|
||
QuaternionNormalize(p1);
|
||
qt[0] = p1[0];
|
||
qt[1] = p1[1];
|
||
qt[2] = p1[2];
|
||
qt[3] = p1[3];
|
||
}
|
||
|
||
#if ALLOW_SIMD_QUATERNION_MATH
|
||
FORCEINLINE fltx4 QuaternionMASIMD(const fltx4 &p, float s, const fltx4 &q)
|
||
{
|
||
fltx4 p1, q1, result;
|
||
q1 = QuaternionScaleSIMD(q, s);
|
||
p1 = QuaternionMultSIMD(p, q1);
|
||
result = QuaternionNormalizeSIMD(p1);
|
||
return result;
|
||
}
|
||
#endif
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: qt = p + s * q
|
||
//-----------------------------------------------------------------------------
|
||
void QuaternionAccumulate(const Quaternion &p, float s, const Quaternion &q, Quaternion &qt)
|
||
{
|
||
Quaternion q2;
|
||
QuaternionAlign(p, q, q2);
|
||
|
||
qt[0] = p[0] + s * q2[0];
|
||
qt[1] = p[1] + s * q2[1];
|
||
qt[2] = p[2] + s * q2[2];
|
||
qt[3] = p[3] + s * q2[3];
|
||
}
|
||
|
||
#if ALLOW_SIMD_QUATERNION_MATH
|
||
FORCEINLINE fltx4 QuaternionAccumulateSIMD(const fltx4 &p, float s, const fltx4 &q)
|
||
{
|
||
fltx4 q2, s4, result;
|
||
q2 = QuaternionAlignSIMD(p, q);
|
||
s4 = ReplicateX4(s);
|
||
result = MaddSIMD(s4, q2, p);
|
||
return result;
|
||
}
|
||
#endif
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: blend together in world space q1,pos1 with q2,pos2. Return result in q1,pos1.
|
||
// 0 returns q1, pos1. 1 returns q2, pos2
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void WorldSpaceSlerp(
|
||
const CStudioHdr *pStudioHdr,
|
||
Quaternion q1[MAXSTUDIOBONES],
|
||
Vector pos1[MAXSTUDIOBONES],
|
||
mstudioseqdesc_t &seqdesc,
|
||
int sequence,
|
||
const Quaternion q2[MAXSTUDIOBONES],
|
||
const Vector pos2[MAXSTUDIOBONES],
|
||
float s,
|
||
int boneMask)
|
||
{
|
||
int i, j;
|
||
float s1; // weight of parent for q2, pos2
|
||
float s2; // weight for q2, pos2
|
||
|
||
// make fake root transform
|
||
matrix3x4_t rootXform;
|
||
SetIdentityMatrix(rootXform);
|
||
|
||
// matrices for q2, pos2
|
||
matrix3x4_t *srcBoneToWorld = g_MatrixPool.Alloc();
|
||
CBoneBitList srcBoneComputed;
|
||
|
||
matrix3x4_t *destBoneToWorld = g_MatrixPool.Alloc();
|
||
CBoneBitList destBoneComputed;
|
||
|
||
matrix3x4_t *targetBoneToWorld = g_MatrixPool.Alloc();
|
||
CBoneBitList targetBoneComputed;
|
||
|
||
virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel();
|
||
const virtualgroup_t *pSeqGroup = NULL;
|
||
if (pVModel)
|
||
{
|
||
pSeqGroup = pVModel->pSeqGroup(sequence);
|
||
}
|
||
|
||
mstudiobone_t *pbone = pStudioHdr->pBone(0);
|
||
|
||
for (i = 0; i < pStudioHdr->numbones(); i++)
|
||
{
|
||
// skip unused bones
|
||
if (!(pStudioHdr->boneFlags(i) & boneMask))
|
||
{
|
||
continue;
|
||
}
|
||
|
||
int n = pbone[i].parent;
|
||
s1 = 0.0;
|
||
if (pSeqGroup)
|
||
{
|
||
j = pSeqGroup->boneMap[i];
|
||
if (j >= 0)
|
||
{
|
||
s2 = s * seqdesc.weight(j); // blend in based on this bones weight
|
||
if (n != -1)
|
||
{
|
||
s1 = s * seqdesc.weight(pSeqGroup->boneMap[n]);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
s2 = 0.0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
s2 = s * seqdesc.weight(i); // blend in based on this bones weight
|
||
if (n != -1)
|
||
{
|
||
s1 = s * seqdesc.weight(n);
|
||
}
|
||
}
|
||
|
||
if (s1 == 1.0 && s2 == 1.0)
|
||
{
|
||
pos1[i] = pos2[i];
|
||
q1[i] = q2[i];
|
||
}
|
||
else if (s2 > 0.0)
|
||
{
|
||
Quaternion srcQ, destQ;
|
||
Vector srcPos, destPos;
|
||
Quaternion targetQ;
|
||
Vector targetPos;
|
||
Vector tmp;
|
||
|
||
BuildBoneChain(pStudioHdr, rootXform, pos1, q1, i, destBoneToWorld, destBoneComputed);
|
||
BuildBoneChain(pStudioHdr, rootXform, pos2, q2, i, srcBoneToWorld, srcBoneComputed);
|
||
|
||
MatrixAngles(destBoneToWorld[i], destQ, destPos);
|
||
MatrixAngles(srcBoneToWorld[i], srcQ, srcPos);
|
||
|
||
QuaternionSlerp(destQ, srcQ, s2, targetQ);
|
||
AngleMatrix(targetQ, destPos, targetBoneToWorld[i]);
|
||
|
||
// back solve
|
||
if (n == -1)
|
||
{
|
||
MatrixAngles(targetBoneToWorld[i], q1[i], tmp);
|
||
}
|
||
else
|
||
{
|
||
matrix3x4_t worldToBone;
|
||
MatrixInvert(targetBoneToWorld[n], worldToBone);
|
||
|
||
matrix3x4_t local;
|
||
ConcatTransforms(worldToBone, targetBoneToWorld[i], local);
|
||
MatrixAngles(local, q1[i], tmp);
|
||
|
||
// blend bone lengths (local space)
|
||
pos1[i] = Lerp(s2, pos1[i], pos2[i]);
|
||
}
|
||
}
|
||
}
|
||
g_MatrixPool.Free(srcBoneToWorld);
|
||
g_MatrixPool.Free(destBoneToWorld);
|
||
g_MatrixPool.Free(targetBoneToWorld);
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: blend together q1,pos1 with q2,pos2. Return result in q1,pos1.
|
||
// 0 returns q1, pos1. 1 returns q2, pos2
|
||
//-----------------------------------------------------------------------------
|
||
void SlerpBones(
|
||
const CStudioHdr *pStudioHdr,
|
||
Quaternion q1[MAXSTUDIOBONES],
|
||
Vector pos1[MAXSTUDIOBONES],
|
||
mstudioseqdesc_t &seqdesc, // source of q2 and pos2
|
||
int sequence,
|
||
const QuaternionAligned q2[MAXSTUDIOBONES],
|
||
const Vector pos2[MAXSTUDIOBONES],
|
||
float s,
|
||
int boneMask)
|
||
{
|
||
if (s <= 0.0f)
|
||
return;
|
||
if (s > 1.0f)
|
||
{
|
||
s = 1.0f;
|
||
}
|
||
|
||
if (seqdesc.flags & STUDIO_WORLD)
|
||
{
|
||
WorldSpaceSlerp(pStudioHdr, q1, pos1, seqdesc, sequence, q2, pos2, s, boneMask);
|
||
return;
|
||
}
|
||
|
||
int i, j;
|
||
virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel();
|
||
const virtualgroup_t *pSeqGroup = NULL;
|
||
if (pVModel)
|
||
{
|
||
pSeqGroup = pVModel->pSeqGroup(sequence);
|
||
}
|
||
|
||
// Build weightlist for all bones
|
||
int nBoneCount = pStudioHdr->numbones();
|
||
float *pS2 = (float*)stackalloc(nBoneCount * sizeof(float));
|
||
for (i = 0; i < nBoneCount; i++)
|
||
{
|
||
// skip unused bones
|
||
if (!(pStudioHdr->boneFlags(i) & boneMask))
|
||
{
|
||
pS2[i] = 0.0f;
|
||
continue;
|
||
}
|
||
|
||
if (!pSeqGroup)
|
||
{
|
||
pS2[i] = s * seqdesc.weight(i); // blend in based on this bones weight
|
||
continue;
|
||
}
|
||
|
||
j = pSeqGroup->boneMap[i];
|
||
if (j >= 0)
|
||
{
|
||
pS2[i] = s * seqdesc.weight(j); // blend in based on this bones weight
|
||
}
|
||
else
|
||
{
|
||
pS2[i] = 0.0;
|
||
}
|
||
}
|
||
|
||
float s1, s2;
|
||
if (seqdesc.flags & STUDIO_DELTA)
|
||
{
|
||
for (i = 0; i < nBoneCount; i++)
|
||
{
|
||
s2 = pS2[i];
|
||
if (s2 <= 0.0f)
|
||
continue;
|
||
|
||
if (seqdesc.flags & STUDIO_POST)
|
||
{
|
||
#ifndef _X360
|
||
QuaternionMA(q1[i], s2, q2[i], q1[i]);
|
||
#else
|
||
fltx4 q1simd = LoadUnalignedSIMD(q1[i].Base());
|
||
fltx4 q2simd = LoadAlignedSIMD(q2[i]);
|
||
fltx4 result = QuaternionMASIMD(q1simd, s2, q2simd);
|
||
StoreUnalignedSIMD(q1[i].Base(), result);
|
||
#endif
|
||
// FIXME: are these correct?
|
||
pos1[i][0] = pos1[i][0] + pos2[i][0] * s2;
|
||
pos1[i][1] = pos1[i][1] + pos2[i][1] * s2;
|
||
pos1[i][2] = pos1[i][2] + pos2[i][2] * s2;
|
||
}
|
||
else
|
||
{
|
||
#ifndef _X360
|
||
QuaternionSM(s2, q2[i], q1[i], q1[i]);
|
||
#else
|
||
fltx4 q1simd = LoadUnalignedSIMD(q1[i].Base());
|
||
fltx4 q2simd = LoadAlignedSIMD(q2[i]);
|
||
fltx4 result = QuaternionSMSIMD(s2, q2simd, q1simd);
|
||
StoreUnalignedSIMD(q1[i].Base(), result);
|
||
#endif
|
||
|
||
// FIXME: are these correct?
|
||
pos1[i][0] = pos1[i][0] + pos2[i][0] * s2;
|
||
pos1[i][1] = pos1[i][1] + pos2[i][1] * s2;
|
||
pos1[i][2] = pos1[i][2] + pos2[i][2] * s2;
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
QuaternionAligned q3;
|
||
for (i = 0; i < nBoneCount; i++)
|
||
{
|
||
s2 = pS2[i];
|
||
if (s2 <= 0.0f)
|
||
continue;
|
||
|
||
s1 = 1.0 - s2;
|
||
|
||
#ifdef _X360
|
||
fltx4 q1simd, q2simd, result;
|
||
q1simd = LoadUnalignedSIMD(q1[i].Base());
|
||
q2simd = LoadAlignedSIMD(q2[i]);
|
||
#endif
|
||
if (pStudioHdr->boneFlags(i) & BONE_FIXED_ALIGNMENT)
|
||
{
|
||
#ifndef _X360
|
||
QuaternionSlerpNoAlign(q2[i], q1[i], s1, q3);
|
||
#else
|
||
result = QuaternionSlerpNoAlignSIMD(q2simd, q1simd, s1);
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
#ifndef _X360
|
||
QuaternionSlerp(q2[i], q1[i], s1, q3);
|
||
#else
|
||
result = QuaternionSlerpSIMD(q2simd, q1simd, s1);
|
||
#endif
|
||
}
|
||
|
||
#ifndef _X360
|
||
q1[i][0] = q3[0];
|
||
q1[i][1] = q3[1];
|
||
q1[i][2] = q3[2];
|
||
q1[i][3] = q3[3];
|
||
#else
|
||
StoreUnalignedSIMD(q1[i].Base(), result);
|
||
#endif
|
||
|
||
pos1[i][0] = pos1[i][0] * s1 + pos2[i][0] * s2;
|
||
pos1[i][1] = pos1[i][1] * s1 + pos2[i][1] * s2;
|
||
pos1[i][2] = pos1[i][2] * s1 + pos2[i][2] * s2;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Inter-animation blend. Assumes both types are identical.
|
||
// blend together q1,pos1 with q2,pos2. Return result in q1,pos1.
|
||
// 0 returns q1, pos1. 1 returns q2, pos2
|
||
//-----------------------------------------------------------------------------
|
||
void BlendBones(
|
||
const CStudioHdr *pStudioHdr,
|
||
Quaternion q1[MAXSTUDIOBONES],
|
||
Vector pos1[MAXSTUDIOBONES],
|
||
mstudioseqdesc_t &seqdesc,
|
||
int sequence,
|
||
const Quaternion q2[MAXSTUDIOBONES],
|
||
const Vector pos2[MAXSTUDIOBONES],
|
||
float s,
|
||
int boneMask)
|
||
{
|
||
int i, j;
|
||
Quaternion q3;
|
||
|
||
virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel();
|
||
const virtualgroup_t *pSeqGroup = NULL;
|
||
if (pVModel)
|
||
{
|
||
pSeqGroup = pVModel->pSeqGroup(sequence);
|
||
}
|
||
|
||
if (s <= 0)
|
||
{
|
||
Assert(0); // shouldn't have been called
|
||
return;
|
||
}
|
||
else if (s >= 1.0)
|
||
{
|
||
Assert(0); // shouldn't have been called
|
||
for (i = 0; i < pStudioHdr->numbones(); i++)
|
||
{
|
||
// skip unused bones
|
||
if (!(pStudioHdr->boneFlags(i) & boneMask))
|
||
{
|
||
continue;
|
||
}
|
||
|
||
if (pSeqGroup)
|
||
{
|
||
j = pSeqGroup->boneMap[i];
|
||
}
|
||
else
|
||
{
|
||
j = i;
|
||
}
|
||
|
||
if (j >= 0 && seqdesc.weight(j) > 0.0)
|
||
{
|
||
q1[i] = q2[i];
|
||
pos1[i] = pos2[i];
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
float s2 = s;
|
||
float s1 = 1.0 - s2;
|
||
|
||
for (i = 0; i < pStudioHdr->numbones(); i++)
|
||
{
|
||
// skip unused bones
|
||
if (!(pStudioHdr->boneFlags(i) & boneMask))
|
||
{
|
||
continue;
|
||
}
|
||
|
||
if (pSeqGroup)
|
||
{
|
||
j = pSeqGroup->boneMap[i];
|
||
}
|
||
else
|
||
{
|
||
j = i;
|
||
}
|
||
|
||
if (j >= 0 && seqdesc.weight(j) > 0.0)
|
||
{
|
||
if (pStudioHdr->boneFlags(i) & BONE_FIXED_ALIGNMENT)
|
||
{
|
||
QuaternionBlendNoAlign(q2[i], q1[i], s1, q3);
|
||
}
|
||
else
|
||
{
|
||
QuaternionBlend(q2[i], q1[i], s1, q3);
|
||
}
|
||
q1[i][0] = q3[0];
|
||
q1[i][1] = q3[1];
|
||
q1[i][2] = q3[2];
|
||
q1[i][3] = q3[3];
|
||
pos1[i][0] = pos1[i][0] * s1 + pos2[i][0] * s2;
|
||
pos1[i][1] = pos1[i][1] * s1 + pos2[i][1] * s2;
|
||
pos1[i][2] = pos1[i][2] * s1 + pos2[i][2] * s2;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Scale a set of bones. Must be of type delta
|
||
//-----------------------------------------------------------------------------
|
||
void ScaleBones(
|
||
const CStudioHdr *pStudioHdr,
|
||
Quaternion q1[MAXSTUDIOBONES],
|
||
Vector pos1[MAXSTUDIOBONES],
|
||
int sequence,
|
||
float s,
|
||
int boneMask)
|
||
{
|
||
int i, j;
|
||
Quaternion q3;
|
||
|
||
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(sequence);
|
||
|
||
virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel();
|
||
const virtualgroup_t *pSeqGroup = NULL;
|
||
if (pVModel)
|
||
{
|
||
pSeqGroup = pVModel->pSeqGroup(sequence);
|
||
}
|
||
|
||
float s2 = s;
|
||
float s1 = 1.0 - s2;
|
||
|
||
for (i = 0; i < pStudioHdr->numbones(); i++)
|
||
{
|
||
// skip unused bones
|
||
if (!(pStudioHdr->boneFlags(i) & boneMask))
|
||
{
|
||
continue;
|
||
}
|
||
|
||
if (pSeqGroup)
|
||
{
|
||
j = pSeqGroup->boneMap[i];
|
||
}
|
||
else
|
||
{
|
||
j = i;
|
||
}
|
||
|
||
if (j >= 0 && seqdesc.weight(j) > 0.0)
|
||
{
|
||
QuaternionIdentityBlend(q1[i], s1, q1[i]);
|
||
VectorScale(pos1[i], s2, pos1[i]);
|
||
}
|
||
}
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: resolve a global pose parameter to the specific setting for this sequence
|
||
//-----------------------------------------------------------------------------
|
||
void Studio_LocalPoseParameter(const CStudioHdr *pStudioHdr, const float poseParameter[], mstudioseqdesc_t &seqdesc, int iSequence, int iLocalIndex, float &flSetting, int &index)
|
||
{
|
||
int iPose = pStudioHdr->GetSharedPoseParameter(iSequence, seqdesc.paramindex[iLocalIndex]);
|
||
|
||
if (iPose == -1)
|
||
{
|
||
flSetting = 0;
|
||
index = 0;
|
||
return;
|
||
}
|
||
|
||
const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)pStudioHdr)->pPoseParameter(iPose);
|
||
|
||
float flValue = poseParameter[iPose];
|
||
|
||
if (Pose.loop)
|
||
{
|
||
float wrap = (Pose.start + Pose.end) / 2.0 + Pose.loop / 2.0;
|
||
float shift = Pose.loop - wrap;
|
||
|
||
flValue = flValue - Pose.loop * floor((flValue + shift) / Pose.loop);
|
||
}
|
||
|
||
if (seqdesc.posekeyindex == 0)
|
||
{
|
||
float flLocalStart = ((float)seqdesc.paramstart[iLocalIndex] - Pose.start) / (Pose.end - Pose.start);
|
||
float flLocalEnd = ((float)seqdesc.paramend[iLocalIndex] - Pose.start) / (Pose.end - Pose.start);
|
||
|
||
// convert into local range
|
||
flSetting = (flValue - flLocalStart) / (flLocalEnd - flLocalStart);
|
||
|
||
// clamp. This shouldn't ever need to happen if it's looping.
|
||
if (flSetting < 0)
|
||
flSetting = 0;
|
||
if (flSetting > 1)
|
||
flSetting = 1;
|
||
|
||
index = 0;
|
||
if (seqdesc.groupsize[iLocalIndex] > 2)
|
||
{
|
||
// estimate index
|
||
index = (int)(flSetting * (seqdesc.groupsize[iLocalIndex] - 1));
|
||
if (index == seqdesc.groupsize[iLocalIndex] - 1) index = seqdesc.groupsize[iLocalIndex] - 2;
|
||
flSetting = flSetting * (seqdesc.groupsize[iLocalIndex] - 1) - index;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
flValue = flValue * (Pose.end - Pose.start) + Pose.start;
|
||
index = 0;
|
||
|
||
// FIXME: this needs to be 2D
|
||
// FIXME: this shouldn't be a linear search
|
||
|
||
while (1)
|
||
{
|
||
flSetting = (flValue - seqdesc.poseKey(iLocalIndex, index)) / (seqdesc.poseKey(iLocalIndex, index + 1) - seqdesc.poseKey(iLocalIndex, index));
|
||
/*
|
||
if (index > 0 && flSetting < 0.0)
|
||
{
|
||
index--;
|
||
continue;
|
||
}
|
||
else
|
||
*/
|
||
if (index < seqdesc.groupsize[iLocalIndex] - 2 && flSetting > 1.0)
|
||
{
|
||
index++;
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
|
||
// clamp.
|
||
if (flSetting < 0.0f)
|
||
flSetting = 0.0f;
|
||
if (flSetting > 1.0f)
|
||
flSetting = 1.0f;
|
||
}
|
||
}
|
||
|
||
void Studio_CalcBoneToBoneTransform(const CStudioHdr *pStudioHdr, int inputBoneIndex, int outputBoneIndex, matrix3x4_t& matrixOut)
|
||
{
|
||
mstudiobone_t *pbone = pStudioHdr->pBone(inputBoneIndex);
|
||
|
||
matrix3x4_t inputToPose;
|
||
MatrixInvert(pbone->poseToBone, inputToPose);
|
||
ConcatTransforms(pStudioHdr->pBone(outputBoneIndex)->poseToBone, inputToPose, matrixOut);
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: calculate a pose for a single sequence
|
||
//-----------------------------------------------------------------------------
|
||
void InitPose(
|
||
const CStudioHdr *pStudioHdr,
|
||
Vector pos[],
|
||
Quaternion q[],
|
||
int boneMask
|
||
)
|
||
{
|
||
if (!pStudioHdr->pLinearBones())
|
||
{
|
||
for (int i = 0; i < pStudioHdr->numbones(); i++)
|
||
{
|
||
if (pStudioHdr->boneFlags(i) & boneMask)
|
||
{
|
||
mstudiobone_t *pbone = pStudioHdr->pBone(i);
|
||
pos[i] = pbone->pos;
|
||
q[i] = pbone->quat;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mstudiolinearbone_t *pLinearBones = pStudioHdr->pLinearBones();
|
||
for (int i = 0; i < pStudioHdr->numbones(); i++)
|
||
{
|
||
if (pStudioHdr->boneFlags(i) & boneMask)
|
||
{
|
||
pos[i] = pLinearBones->pos(i);
|
||
q[i] = pLinearBones->quat(i);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
inline bool PoseIsAllZeros(
|
||
const CStudioHdr *pStudioHdr,
|
||
int sequence,
|
||
mstudioseqdesc_t &seqdesc,
|
||
int i0,
|
||
int i1
|
||
)
|
||
{
|
||
int baseanim;
|
||
|
||
// remove "zero" positional blends
|
||
baseanim = pStudioHdr->iRelativeAnim(sequence, seqdesc.anim(i0, i1));
|
||
mstudioanimdesc_t &anim = ((CStudioHdr *)pStudioHdr)->pAnimdesc(baseanim);
|
||
return (anim.flags & STUDIO_ALLZEROS) != 0;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: turn a 2x2 blend into a 3 way triangle blend
|
||
// Returns: returns the animination indices and barycentric coordinates of a triangle
|
||
// the triangle is a right triangle, and the diagonal is between elements [0] and [2]
|
||
//-----------------------------------------------------------------------------
|
||
|
||
static ConVar anim_3wayblend("anim_3wayblend", "1", FCVAR_REPLICATED, "Toggle the 3-way animation blending code.");
|
||
|
||
void Calc3WayBlendIndices(int i0, int i1, float s0, float s1, const mstudioseqdesc_t &seqdesc, int *pAnimIndices, float *pWeight)
|
||
{
|
||
// Figure out which bi-section direction we are using to make triangles.
|
||
bool bEven = (((i0 + i1) & 0x1) == 0);
|
||
|
||
int x1, y1;
|
||
int x2, y2;
|
||
int x3, y3;
|
||
|
||
// diagonal is between elements 1 & 3
|
||
// TL to BR
|
||
if (bEven)
|
||
{
|
||
if (s0 > s1)
|
||
{
|
||
// B
|
||
x1 = 0; y1 = 0;
|
||
x2 = 1; y2 = 0;
|
||
x3 = 1; y3 = 1;
|
||
pWeight[0] = (1.0f - s0);
|
||
pWeight[1] = s0 - s1;
|
||
}
|
||
else
|
||
{
|
||
// C
|
||
x1 = 1; y1 = 1;
|
||
x2 = 0; y2 = 1;
|
||
x3 = 0; y3 = 0;
|
||
pWeight[0] = s0;
|
||
pWeight[1] = s1 - s0;
|
||
}
|
||
}
|
||
// BL to TR
|
||
else
|
||
{
|
||
float flTotal = s0 + s1;
|
||
|
||
if (flTotal > 1.0f)
|
||
{
|
||
// D
|
||
x1 = 1; y1 = 0;
|
||
x2 = 1; y2 = 1;
|
||
x3 = 0; y3 = 1;
|
||
pWeight[0] = (1.0f - s1);
|
||
pWeight[1] = s0 - 1.0f + s1;
|
||
}
|
||
else
|
||
{
|
||
// A
|
||
x1 = 0; y1 = 1;
|
||
x2 = 0; y2 = 0;
|
||
x3 = 1; y3 = 0;
|
||
pWeight[0] = s1;
|
||
pWeight[1] = 1.0f - s0 - s1;
|
||
}
|
||
}
|
||
|
||
pAnimIndices[0] = seqdesc.anim(i0 + x1, i1 + y1);
|
||
pAnimIndices[1] = seqdesc.anim(i0 + x2, i1 + y2);
|
||
pAnimIndices[2] = seqdesc.anim(i0 + x3, i1 + y3);
|
||
|
||
/*
|
||
float w0 = ((x2-x3)*(y3-s1) - (x3-s0)*(y2-y3)) / ((x1-x3)*(y2-y3) - (x2-x3)*(y1-y3));
|
||
float w1 = ((x1-x3)*(y3-s1) - (x3-s0)*(y1-y3)) / ((x2-x3)*(y1-y3) - (x1-x3)*(y2-y3));
|
||
Assert( pWeight[0] == w0 && pWeight[1] == w1 );
|
||
*/
|
||
|
||
// clamp the diagonal
|
||
if (pWeight[1] < 0.001f)
|
||
pWeight[1] = 0.0f;
|
||
pWeight[2] = 1.0f - pWeight[0] - pWeight[1];
|
||
|
||
Assert(pWeight[0] >= 0.0f && pWeight[0] <= 1.0f);
|
||
Assert(pWeight[1] >= 0.0f && pWeight[1] <= 1.0f);
|
||
Assert(pWeight[2] >= 0.0f && pWeight[2] <= 1.0f);
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: calculate a pose for a single sequence
|
||
//-----------------------------------------------------------------------------
|
||
bool CalcPoseSingle(
|
||
const CStudioHdr *pStudioHdr,
|
||
Vector pos[],
|
||
Quaternion q[],
|
||
mstudioseqdesc_t &seqdesc,
|
||
int sequence,
|
||
float cycle,
|
||
const float poseParameter[],
|
||
int boneMask,
|
||
float flTime
|
||
)
|
||
{
|
||
bool bResult = true;
|
||
|
||
Vector *pos2 = g_VectorPool.Alloc();
|
||
Quaternion *q2 = g_QaternionPool.Alloc();
|
||
Vector *pos3 = g_VectorPool.Alloc();
|
||
Quaternion *q3 = g_QaternionPool.Alloc();
|
||
|
||
if (sequence >= pStudioHdr->GetNumSeq())
|
||
{
|
||
sequence = 0;
|
||
seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(sequence);
|
||
}
|
||
|
||
|
||
int i0 = 0, i1 = 0;
|
||
float s0 = 0, s1 = 0;
|
||
|
||
Studio_LocalPoseParameter(pStudioHdr, poseParameter, seqdesc, sequence, 0, s0, i0);
|
||
Studio_LocalPoseParameter(pStudioHdr, poseParameter, seqdesc, sequence, 1, s1, i1);
|
||
|
||
|
||
if (seqdesc.flags & STUDIO_REALTIME)
|
||
{
|
||
float cps = Studio_CPS(pStudioHdr, seqdesc, sequence, poseParameter);
|
||
cycle = flTime * cps;
|
||
cycle = cycle - (int)cycle;
|
||
}
|
||
else if (seqdesc.flags & STUDIO_CYCLEPOSE)
|
||
{
|
||
int iPose = pStudioHdr->GetSharedPoseParameter(sequence, seqdesc.cycleposeindex);
|
||
if (iPose != -1)
|
||
{
|
||
/*
|
||
const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)pStudioHdr)->pPoseParameter( iPose );
|
||
cycle = poseParameter[ iPose ] * (Pose.end - Pose.start) + Pose.start;
|
||
*/
|
||
cycle = poseParameter[iPose];
|
||
}
|
||
else
|
||
{
|
||
cycle = 0.0f;
|
||
}
|
||
}
|
||
else if (cycle < 0 || cycle >= 1)
|
||
{
|
||
if (seqdesc.flags & STUDIO_LOOPING)
|
||
{
|
||
cycle = cycle - (int)cycle;
|
||
if (cycle < 0) cycle += 1;
|
||
}
|
||
else
|
||
{
|
||
cycle = clamp(cycle, 0.0f, 1.0f);
|
||
}
|
||
}
|
||
|
||
if (s0 < 0.001)
|
||
{
|
||
if (s1 < 0.001)
|
||
{
|
||
if (PoseIsAllZeros(pStudioHdr, sequence, seqdesc, i0, i1))
|
||
{
|
||
bResult = false;
|
||
}
|
||
else
|
||
{
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1), cycle, boneMask);
|
||
}
|
||
}
|
||
else if (s1 > 0.999)
|
||
{
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1 + 1), cycle, boneMask);
|
||
}
|
||
else
|
||
{
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1), cycle, boneMask);
|
||
CalcAnimation(pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim(i0, i1 + 1), cycle, boneMask);
|
||
BlendBones(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s1, boneMask);
|
||
}
|
||
}
|
||
else if (s0 > 0.999)
|
||
{
|
||
if (s1 < 0.001)
|
||
{
|
||
if (PoseIsAllZeros(pStudioHdr, sequence, seqdesc, i0 + 1, i1))
|
||
{
|
||
bResult = false;
|
||
}
|
||
else
|
||
{
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0 + 1, i1), cycle, boneMask);
|
||
}
|
||
}
|
||
else if (s1 > 0.999)
|
||
{
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0 + 1, i1 + 1), cycle, boneMask);
|
||
}
|
||
else
|
||
{
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0 + 1, i1), cycle, boneMask);
|
||
CalcAnimation(pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim(i0 + 1, i1 + 1), cycle, boneMask);
|
||
BlendBones(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s1, boneMask);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (s1 < 0.001)
|
||
{
|
||
if (PoseIsAllZeros(pStudioHdr, sequence, seqdesc, i0 + 1, i1))
|
||
{
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1), cycle, boneMask);
|
||
ScaleBones(pStudioHdr, q, pos, sequence, 1.0 - s0, boneMask);
|
||
}
|
||
else if (PoseIsAllZeros(pStudioHdr, sequence, seqdesc, i0, i1))
|
||
{
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0 + 1, i1), cycle, boneMask);
|
||
ScaleBones(pStudioHdr, q, pos, sequence, s0, boneMask);
|
||
}
|
||
else
|
||
{
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1), cycle, boneMask);
|
||
CalcAnimation(pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim(i0 + 1, i1), cycle, boneMask);
|
||
|
||
BlendBones(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s0, boneMask);
|
||
}
|
||
}
|
||
else if (s1 > 0.999)
|
||
{
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1 + 1), cycle, boneMask);
|
||
CalcAnimation(pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim(i0 + 1, i1 + 1), cycle, boneMask);
|
||
BlendBones(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s0, boneMask);
|
||
}
|
||
else if (!anim_3wayblend.GetBool())
|
||
{
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1), cycle, boneMask);
|
||
CalcAnimation(pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim(i0 + 1, i1), cycle, boneMask);
|
||
BlendBones(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s0, boneMask);
|
||
|
||
CalcAnimation(pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim(i0, i1 + 1), cycle, boneMask);
|
||
CalcAnimation(pStudioHdr, pos3, q3, seqdesc, sequence, seqdesc.anim(i0 + 1, i1 + 1), cycle, boneMask);
|
||
BlendBones(pStudioHdr, q2, pos2, seqdesc, sequence, q3, pos3, s0, boneMask);
|
||
|
||
BlendBones(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s1, boneMask);
|
||
}
|
||
else
|
||
{
|
||
int iAnimIndices[3];
|
||
float weight[3];
|
||
|
||
Calc3WayBlendIndices(i0, i1, s0, s1, seqdesc, iAnimIndices, weight);
|
||
|
||
/*
|
||
char buf[256];
|
||
sprintf( buf, "%d %6.2f %d %6.2f : %6.2f %6.2f %6.2f\n", i0, s0, i1, s1, weight[0], weight[1], weight[2] );
|
||
OutputDebugString( buf );
|
||
*/
|
||
|
||
if (weight[1] < 0.001)
|
||
{
|
||
// on diagonal
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, iAnimIndices[0], cycle, boneMask);
|
||
CalcAnimation(pStudioHdr, pos2, q2, seqdesc, sequence, iAnimIndices[2], cycle, boneMask);
|
||
BlendBones(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, weight[2] / (weight[0] + weight[2]), boneMask);
|
||
}
|
||
else
|
||
{
|
||
CalcAnimation(pStudioHdr, pos, q, seqdesc, sequence, iAnimIndices[0], cycle, boneMask);
|
||
CalcAnimation(pStudioHdr, pos2, q2, seqdesc, sequence, iAnimIndices[1], cycle, boneMask);
|
||
BlendBones(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, weight[1] / (weight[0] + weight[1]), boneMask);
|
||
|
||
CalcAnimation(pStudioHdr, pos3, q3, seqdesc, sequence, iAnimIndices[2], cycle, boneMask);
|
||
BlendBones(pStudioHdr, q, pos, seqdesc, sequence, q3, pos3, weight[2], boneMask);
|
||
}
|
||
}
|
||
}
|
||
|
||
g_VectorPool.Free(pos2);
|
||
g_QaternionPool.Free(q2);
|
||
g_VectorPool.Free(pos3);
|
||
g_QaternionPool.Free(q3);
|
||
|
||
return bResult;
|
||
}
|
||
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: calculate a pose for a single sequence
|
||
// adds autolayers, runs local ik rukes
|
||
//-----------------------------------------------------------------------------
|
||
void CBoneSetup::AddSequenceLayers(
|
||
Vector pos[],
|
||
Quaternion q[],
|
||
mstudioseqdesc_t &seqdesc,
|
||
int sequence,
|
||
float cycle,
|
||
float flWeight,
|
||
float flTime,
|
||
CIKContext *pIKContext
|
||
)
|
||
{
|
||
for (int i = 0; i < seqdesc.numautolayers; i++)
|
||
{
|
||
mstudioautolayer_t *pLayer = seqdesc.pAutolayer(i);
|
||
|
||
if (pLayer->flags & STUDIO_AL_LOCAL)
|
||
continue;
|
||
|
||
float layerCycle = cycle;
|
||
float layerWeight = flWeight;
|
||
|
||
if (pLayer->start != pLayer->end)
|
||
{
|
||
float s = 1.0;
|
||
float index;
|
||
|
||
if (!(pLayer->flags & STUDIO_AL_POSE))
|
||
{
|
||
index = cycle;
|
||
}
|
||
else
|
||
{
|
||
int iSequence = m_pStudioHdr->iRelativeSeq(sequence, pLayer->iSequence);
|
||
int iPose = m_pStudioHdr->GetSharedPoseParameter(iSequence, pLayer->iPose);
|
||
if (iPose != -1)
|
||
{
|
||
const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)m_pStudioHdr)->pPoseParameter(iPose);
|
||
index = m_flPoseParameter[iPose] * (Pose.end - Pose.start) + Pose.start;
|
||
}
|
||
else
|
||
{
|
||
index = 0;
|
||
}
|
||
}
|
||
|
||
if (index < pLayer->start)
|
||
continue;
|
||
if (index >= pLayer->end)
|
||
continue;
|
||
|
||
if (index < pLayer->peak && pLayer->start != pLayer->peak)
|
||
{
|
||
s = (index - pLayer->start) / (pLayer->peak - pLayer->start);
|
||
}
|
||
else if (index > pLayer->tail && pLayer->end != pLayer->tail)
|
||
{
|
||
s = (pLayer->end - index) / (pLayer->end - pLayer->tail);
|
||
}
|
||
|
||
if (pLayer->flags & STUDIO_AL_SPLINE)
|
||
{
|
||
s = SimpleSpline(s);
|
||
}
|
||
|
||
if ((pLayer->flags & STUDIO_AL_XFADE) && (index > pLayer->tail))
|
||
{
|
||
layerWeight = (s * flWeight) / (1 - flWeight + s * flWeight);
|
||
}
|
||
else if (pLayer->flags & STUDIO_AL_NOBLEND)
|
||
{
|
||
layerWeight = s;
|
||
}
|
||
else
|
||
{
|
||
layerWeight = flWeight * s;
|
||
}
|
||
|
||
if (!(pLayer->flags & STUDIO_AL_POSE))
|
||
{
|
||
layerCycle = (cycle - pLayer->start) / (pLayer->end - pLayer->start);
|
||
}
|
||
}
|
||
|
||
int iSequence = m_pStudioHdr->iRelativeSeq(sequence, pLayer->iSequence);
|
||
AccumulatePose(pos, q, iSequence, layerCycle, layerWeight, flTime, pIKContext);
|
||
}
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: calculate a pose for a single sequence
|
||
// adds autolayers, runs local ik rukes
|
||
//-----------------------------------------------------------------------------
|
||
void CBoneSetup::AddLocalLayers(
|
||
Vector pos[],
|
||
Quaternion q[],
|
||
mstudioseqdesc_t &seqdesc,
|
||
int sequence,
|
||
float cycle,
|
||
float flWeight,
|
||
float flTime,
|
||
CIKContext *pIKContext
|
||
)
|
||
{
|
||
if (!(seqdesc.flags & STUDIO_LOCAL))
|
||
{
|
||
return;
|
||
}
|
||
|
||
for (int i = 0; i < seqdesc.numautolayers; i++)
|
||
{
|
||
mstudioautolayer_t *pLayer = seqdesc.pAutolayer(i);
|
||
|
||
if (!(pLayer->flags & STUDIO_AL_LOCAL))
|
||
continue;
|
||
|
||
float layerCycle = cycle;
|
||
float layerWeight = flWeight;
|
||
|
||
if (pLayer->start != pLayer->end)
|
||
{
|
||
float s = 1.0;
|
||
|
||
if (cycle < pLayer->start)
|
||
continue;
|
||
if (cycle >= pLayer->end)
|
||
continue;
|
||
|
||
if (cycle < pLayer->peak && pLayer->start != pLayer->peak)
|
||
{
|
||
s = (cycle - pLayer->start) / (pLayer->peak - pLayer->start);
|
||
}
|
||
else if (cycle > pLayer->tail && pLayer->end != pLayer->tail)
|
||
{
|
||
s = (pLayer->end - cycle) / (pLayer->end - pLayer->tail);
|
||
}
|
||
|
||
if (pLayer->flags & STUDIO_AL_SPLINE)
|
||
{
|
||
s = SimpleSpline(s);
|
||
}
|
||
|
||
if ((pLayer->flags & STUDIO_AL_XFADE) && (cycle > pLayer->tail))
|
||
{
|
||
layerWeight = (s * flWeight) / (1 - flWeight + s * flWeight);
|
||
}
|
||
else if (pLayer->flags & STUDIO_AL_NOBLEND)
|
||
{
|
||
layerWeight = s;
|
||
}
|
||
else
|
||
{
|
||
layerWeight = flWeight * s;
|
||
}
|
||
|
||
layerCycle = (cycle - pLayer->start) / (pLayer->end - pLayer->start);
|
||
}
|
||
|
||
int iSequence = m_pStudioHdr->iRelativeSeq(sequence, pLayer->iSequence);
|
||
AccumulatePose(pos, q, iSequence, layerCycle, layerWeight, flTime, pIKContext);
|
||
}
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: my sleezy attempt at an interface only class
|
||
//-----------------------------------------------------------------------------
|
||
|
||
IBoneSetup::IBoneSetup(const CStudioHdr *pStudioHdr, int boneMask, const float poseParameter[], IPoseDebugger *pPoseDebugger)
|
||
{
|
||
m_pBoneSetup = new CBoneSetup(pStudioHdr, boneMask, poseParameter, pPoseDebugger);
|
||
}
|
||
|
||
IBoneSetup::~IBoneSetup(void)
|
||
{
|
||
if (m_pBoneSetup)
|
||
{
|
||
delete m_pBoneSetup;
|
||
}
|
||
}
|
||
|
||
void IBoneSetup::InitPose(Vector pos[], Quaternion q[])
|
||
{
|
||
::InitPose(m_pBoneSetup->m_pStudioHdr, pos, q, m_pBoneSetup->m_boneMask);
|
||
}
|
||
|
||
void IBoneSetup::AccumulatePose(Vector pos[], Quaternion q[], int sequence, float cycle, float flWeight, float flTime, CIKContext *pIKContext)
|
||
{
|
||
m_pBoneSetup->AccumulatePose(pos, q, sequence, cycle, flWeight, flTime, pIKContext);
|
||
}
|
||
|
||
void IBoneSetup::CalcAutoplaySequences(Vector pos[], Quaternion q[], float flRealTime, CIKContext *pIKContext)
|
||
{
|
||
m_pBoneSetup->CalcAutoplaySequences(pos, q, flRealTime, pIKContext);
|
||
}
|
||
|
||
void CalcBoneAdj(const CStudioHdr *pStudioHdr, Vector pos[], Quaternion q[], const float controllers[], int boneMask);
|
||
|
||
// takes a "controllers[]" array normalized to 0..1 and adds in the adjustments to pos[], and q[].
|
||
void IBoneSetup::CalcBoneAdj(Vector pos[], Quaternion q[], const float controllers[])
|
||
{
|
||
::CalcBoneAdj(m_pBoneSetup->m_pStudioHdr, pos, q, controllers, m_pBoneSetup->m_boneMask);
|
||
}
|
||
|
||
CStudioHdr *IBoneSetup::GetStudioHdr()
|
||
{
|
||
return (CStudioHdr *)m_pBoneSetup->m_pStudioHdr;
|
||
}
|
||
|
||
CBoneSetup::CBoneSetup(const CStudioHdr *pStudioHdr, int boneMask, const float poseParameter[], IPoseDebugger *pPoseDebugger)
|
||
{
|
||
m_pStudioHdr = pStudioHdr;
|
||
m_boneMask = boneMask;
|
||
m_flPoseParameter = poseParameter;
|
||
m_pPoseDebugger = pPoseDebugger;
|
||
}
|
||
|
||
#if 0
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: calculate a pose for a single sequence
|
||
// adds autolayers, runs local ik rukes
|
||
//-----------------------------------------------------------------------------
|
||
void CalcPose(
|
||
const CStudioHdr *pStudioHdr,
|
||
CIKContext *pIKContext,
|
||
Vector pos[],
|
||
Quaternion q[],
|
||
int sequence,
|
||
float cycle,
|
||
const float poseParameter[],
|
||
int boneMask,
|
||
float flWeight,
|
||
float flTime
|
||
)
|
||
{
|
||
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(sequence);
|
||
|
||
Assert(flWeight >= 0.0f && flWeight <= 1.0f);
|
||
// This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up
|
||
flWeight = clamp(flWeight, 0.0f, 1.0f);
|
||
|
||
// add any IK locks to prevent numautolayers from moving extremities
|
||
CIKContext seq_ik;
|
||
if (seqdesc.numiklocks)
|
||
{
|
||
seq_ik.Init(pStudioHdr, vec3_angle, vec3_origin, 0.0, 0, boneMask); // local space relative so absolute position doesn't mater
|
||
seq_ik.AddSequenceLocks(seqdesc, pos, q);
|
||
}
|
||
|
||
CalcPoseSingle(pStudioHdr, pos, q, seqdesc, sequence, cycle, poseParameter, boneMask, flTime);
|
||
|
||
if (pIKContext)
|
||
{
|
||
pIKContext->AddDependencies(seqdesc, sequence, cycle, poseParameter, flWeight);
|
||
}
|
||
|
||
AddSequenceLayers(pStudioHdr, pIKContext, pos, q, seqdesc, sequence, cycle, poseParameter, boneMask, flWeight, flTime);
|
||
|
||
if (seqdesc.numiklocks)
|
||
{
|
||
seq_ik.SolveSequenceLocks(seqdesc, pos, q);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: accumulate a pose for a single sequence on top of existing animation
|
||
// adds autolayers, runs local ik rukes
|
||
//-----------------------------------------------------------------------------
|
||
void CBoneSetup::AccumulatePose(
|
||
Vector pos[],
|
||
Quaternion q[],
|
||
int sequence,
|
||
float cycle,
|
||
float flWeight,
|
||
float flTime,
|
||
CIKContext *pIKContext
|
||
)
|
||
{
|
||
Vector pos2[MAXSTUDIOBONES];
|
||
QuaternionAligned q2[MAXSTUDIOBONES];
|
||
|
||
Assert(flWeight >= 0.0f && flWeight <= 1.0f);
|
||
// This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up
|
||
flWeight = clamp(flWeight, 0.0f, 1.0f);
|
||
|
||
if (sequence < 0)
|
||
return;
|
||
|
||
#ifdef CLIENT_DLL
|
||
// Trigger pose debugger
|
||
if (m_pPoseDebugger)
|
||
{
|
||
m_pPoseDebugger->AccumulatePose(m_pStudioHdr, pIKContext, pos, q, sequence, cycle, m_flPoseParameter, m_boneMask, flWeight, flTime);
|
||
}
|
||
#endif
|
||
|
||
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)m_pStudioHdr)->pSeqdesc(sequence);
|
||
|
||
// add any IK locks to prevent extremities from moving
|
||
CIKContext seq_ik;
|
||
if (seqdesc.numiklocks)
|
||
{
|
||
seq_ik.Init(m_pStudioHdr, vec3_angle, vec3_origin, 0.0, 0, m_boneMask); // local space relative so absolute position doesn't mater
|
||
seq_ik.AddSequenceLocks(seqdesc, pos, q);
|
||
}
|
||
|
||
if (seqdesc.flags & STUDIO_LOCAL)
|
||
{
|
||
::InitPose(m_pStudioHdr, pos2, q2, m_boneMask);
|
||
}
|
||
|
||
if (CalcPoseSingle(m_pStudioHdr, pos2, q2, seqdesc, sequence, cycle, m_flPoseParameter, m_boneMask, flTime))
|
||
{
|
||
// this weight is wrong, the IK rules won't composite at the correct intensity
|
||
AddLocalLayers(pos2, q2, seqdesc, sequence, cycle, 1.0, flTime, pIKContext);
|
||
SlerpBones(m_pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, flWeight, m_boneMask);
|
||
}
|
||
|
||
|
||
if (pIKContext)
|
||
{
|
||
pIKContext->AddDependencies(seqdesc, sequence, cycle, m_flPoseParameter, flWeight);
|
||
}
|
||
|
||
AddSequenceLayers(pos, q, seqdesc, sequence, cycle, flWeight, flTime, pIKContext);
|
||
|
||
if (seqdesc.numiklocks)
|
||
{
|
||
seq_ik.SolveSequenceLocks(seqdesc, pos, q);
|
||
}
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: blend together q1,pos1 with q2,pos2. Return result in q1,pos1.
|
||
// 0 returns q1, pos1. 1 returns q2, pos2
|
||
//-----------------------------------------------------------------------------
|
||
void CalcBoneAdj(
|
||
const CStudioHdr *pStudioHdr,
|
||
Vector pos[],
|
||
Quaternion q[],
|
||
const float controllers[],
|
||
int boneMask
|
||
)
|
||
{
|
||
int i, j, k;
|
||
float value;
|
||
mstudiobonecontroller_t *pbonecontroller;
|
||
Vector p0;
|
||
RadianEuler a0;
|
||
Quaternion q0;
|
||
|
||
for (j = 0; j < pStudioHdr->numbonecontrollers(); j++)
|
||
{
|
||
pbonecontroller = pStudioHdr->pBonecontroller(j);
|
||
k = pbonecontroller->bone;
|
||
|
||
if (pStudioHdr->boneFlags(k) & boneMask)
|
||
{
|
||
i = pbonecontroller->inputfield;
|
||
value = controllers[i];
|
||
if (value < 0) value = 0;
|
||
if (value > 1.0) value = 1.0;
|
||
value = (1.0 - value) * pbonecontroller->start + value * pbonecontroller->end;
|
||
|
||
switch (pbonecontroller->type & STUDIO_TYPES)
|
||
{
|
||
case STUDIO_XR:
|
||
a0.Init(value * (M_PI / 180.0), 0, 0);
|
||
AngleQuaternion(a0, q0);
|
||
QuaternionSM(1.0, q0, q[k], q[k]);
|
||
break;
|
||
case STUDIO_YR:
|
||
a0.Init(0, value * (M_PI / 180.0), 0);
|
||
AngleQuaternion(a0, q0);
|
||
QuaternionSM(1.0, q0, q[k], q[k]);
|
||
break;
|
||
case STUDIO_ZR:
|
||
a0.Init(0, 0, value * (M_PI / 180.0));
|
||
AngleQuaternion(a0, q0);
|
||
QuaternionSM(1.0, q0, q[k], q[k]);
|
||
break;
|
||
case STUDIO_X:
|
||
pos[k].x += value;
|
||
break;
|
||
case STUDIO_Y:
|
||
pos[k].y += value;
|
||
break;
|
||
case STUDIO_Z:
|
||
pos[k].z += value;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void CalcBoneDerivatives(Vector &velocity, AngularImpulse &angVel, const matrix3x4_t &prev, const matrix3x4_t ¤t, float dt)
|
||
{
|
||
float scale = 1.0;
|
||
if (dt > 0)
|
||
{
|
||
scale = 1.0 / dt;
|
||
}
|
||
|
||
Vector endPosition, startPosition, deltaAxis;
|
||
QAngle endAngles, startAngles;
|
||
float deltaAngle;
|
||
|
||
MatrixAngles(prev, startAngles, startPosition);
|
||
MatrixAngles(current, endAngles, endPosition);
|
||
|
||
velocity.x = (endPosition.x - startPosition.x) * scale;
|
||
velocity.y = (endPosition.y - startPosition.y) * scale;
|
||
velocity.z = (endPosition.z - startPosition.z) * scale;
|
||
RotationDeltaAxisAngle(startAngles, endAngles, deltaAxis, deltaAngle);
|
||
VectorScale(deltaAxis, (deltaAngle * scale), angVel);
|
||
}
|
||
|
||
void CalcBoneVelocityFromDerivative(const QAngle &vecAngles, Vector &velocity, AngularImpulse &angVel, const matrix3x4_t ¤t)
|
||
{
|
||
Vector vecLocalVelocity;
|
||
AngularImpulse LocalAngVel;
|
||
Quaternion q;
|
||
float angle;
|
||
MatrixAngles(current, q, vecLocalVelocity);
|
||
QuaternionAxisAngle(q, LocalAngVel, angle);
|
||
LocalAngVel *= angle;
|
||
|
||
matrix3x4_t matAngles;
|
||
AngleMatrix(vecAngles, matAngles);
|
||
VectorTransform(vecLocalVelocity, matAngles, velocity);
|
||
VectorTransform(LocalAngVel, matAngles, angVel);
|
||
}
|
||
|
||
|
||
|
||
|
||
class CIKSolver
|
||
{
|
||
public:
|
||
//-------- SOLVE TWO LINK INVERSE KINEMATICS -------------
|
||
// Author: Ken Perlin
|
||
//
|
||
// Given a two link joint from [0,0,0] to end effector position P,
|
||
// let link lengths be a and b, and let norm |P| = c. Clearly a+b <= c.
|
||
//
|
||
// Problem: find a "knee" position Q such that |Q| = a and |P-Q| = b.
|
||
//
|
||
// In the case of a point on the x axis R = [c,0,0], there is a
|
||
// closed form solution S = [d,e,0], where |S| = a and |R-S| = b:
|
||
//
|
||
// d2+e2 = a2 -- because |S| = a
|
||
// (c-d)2+e2 = b2 -- because |R-S| = b
|
||
//
|
||
// c2-2cd+d2+e2 = b2 -- combine the two equations
|
||
// c2-2cd = b2 - a2
|
||
// c-2d = (b2-a2)/c
|
||
// d - c/2 = (a2-b2)/c / 2
|
||
//
|
||
// d = (c + (a2-b2/c) / 2 -- to solve for d and e.
|
||
// e = sqrt(a2-d2)
|
||
|
||
static float findD(float a, float b, float c) {
|
||
return (c + (a*a - b*b) / c) / 2;
|
||
}
|
||
static float findE(float a, float d) { return sqrt(a*a - d*d); }
|
||
|
||
// This leads to a solution to the more general problem:
|
||
//
|
||
// (1) R = Mfwd(P) -- rotate P onto the x axis
|
||
// (2) Solve for S
|
||
// (3) Q = Minv(S) -- rotate back again
|
||
|
||
float Mfwd[3][3];
|
||
float Minv[3][3];
|
||
|
||
bool solve(float A, float B, float const P[], float const D[], float Q[]) {
|
||
float R[3];
|
||
defineM(P, D);
|
||
rot(Minv, P, R);
|
||
float r = length(R);
|
||
float d = findD(A, B, r);
|
||
float e = findE(A, d);
|
||
float S[3] = { d, e, 0 };
|
||
rot(Mfwd, S, Q);
|
||
return d > (r - B) && d < A;
|
||
}
|
||
|
||
// If "knee" position Q needs to be as close as possible to some point D,
|
||
// then choose M such that M(D) is in the y>0 half of the z=0 plane.
|
||
//
|
||
// Given that constraint, define the forward and inverse of M as follows:
|
||
|
||
void defineM(float const P[], float const D[]) {
|
||
float *X = Minv[0], *Y = Minv[1], *Z = Minv[2];
|
||
|
||
// Minv defines a coordinate system whose x axis contains P, so X = unit(P).
|
||
int i;
|
||
for (i = 0; i < 3; i++)
|
||
X[i] = P[i];
|
||
normalize(X);
|
||
|
||
// Its y axis is perpendicular to P, so Y = unit( E - X(E<>X) ).
|
||
|
||
float dDOTx = dot(D, X);
|
||
for (i = 0; i < 3; i++)
|
||
Y[i] = D[i] - dDOTx * X[i];
|
||
normalize(Y);
|
||
|
||
// Its z axis is perpendicular to both X and Y, so Z = X<>Y.
|
||
|
||
cross(X, Y, Z);
|
||
|
||
// Mfwd = (Minv)T, since transposing inverts a rotation matrix.
|
||
|
||
for (i = 0; i < 3; i++) {
|
||
Mfwd[i][0] = Minv[0][i];
|
||
Mfwd[i][1] = Minv[1][i];
|
||
Mfwd[i][2] = Minv[2][i];
|
||
}
|
||
}
|
||
|
||
//------------ GENERAL VECTOR MATH SUPPORT -----------
|
||
|
||
static float dot(float const a[], float const b[]) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; }
|
||
|
||
static float length(float const v[]) { return sqrt(dot(v, v)); }
|
||
|
||
static void normalize(float v[]) {
|
||
float norm = length(v);
|
||
for (int i = 0; i < 3; i++)
|
||
v[i] /= norm;
|
||
}
|
||
|
||
static void cross(float const a[], float const b[], float c[]) {
|
||
c[0] = a[1] * b[2] - a[2] * b[1];
|
||
c[1] = a[2] * b[0] - a[0] * b[2];
|
||
c[2] = a[0] * b[1] - a[1] * b[0];
|
||
}
|
||
|
||
static void rot(float const M[3][3], float const src[], float dst[]) {
|
||
for (int i = 0; i < 3; i++)
|
||
dst[i] = dot(M[i], src);
|
||
}
|
||
};
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: visual debugging code
|
||
//-----------------------------------------------------------------------------
|
||
#if 1
|
||
inline void debugLine(const Vector& origin, const Vector& dest, int r, int g, int b, bool noDepthTest, float duration) { };
|
||
#else
|
||
extern void drawLine(const Vector &p1, const Vector &p2, int r = 0, int g = 0, int b = 1, bool noDepthTest = true, float duration = 0.1);
|
||
void debugLine(const Vector& origin, const Vector& dest, int r, int g, int b, bool noDepthTest, float duration)
|
||
{
|
||
drawLine(origin, dest, r, g, b, noDepthTest, duration);
|
||
}
|
||
#endif
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: for a 2 bone chain, find the IK solution and reset the matrices
|
||
//-----------------------------------------------------------------------------
|
||
bool Studio_SolveIK(mstudioikchain_t *pikchain, Vector &targetFoot, matrix3x4_t *pBoneToWorld)
|
||
{
|
||
if (pikchain->pLink(0)->kneeDir.LengthSqr() > 0.0)
|
||
{
|
||
Vector targetKneeDir, targetKneePos;
|
||
// FIXME: knee length should be as long as the legs
|
||
Vector tmp = pikchain->pLink(0)->kneeDir;
|
||
VectorRotate(tmp, pBoneToWorld[pikchain->pLink(0)->bone], targetKneeDir);
|
||
MatrixPosition(pBoneToWorld[pikchain->pLink(1)->bone], targetKneePos);
|
||
return Studio_SolveIK(pikchain->pLink(0)->bone, pikchain->pLink(1)->bone, pikchain->pLink(2)->bone, targetFoot, targetKneePos, targetKneeDir, pBoneToWorld);
|
||
}
|
||
else
|
||
{
|
||
return Studio_SolveIK(pikchain->pLink(0)->bone, pikchain->pLink(1)->bone, pikchain->pLink(2)->bone, targetFoot, pBoneToWorld);
|
||
}
|
||
}
|
||
|
||
|
||
#define KNEEMAX_EPSILON 0.9998 // (0.9998 is about 1 degree)
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Solve Knee position for a known hip and foot location, but no specific knee direction preference
|
||
//-----------------------------------------------------------------------------
|
||
|
||
bool Studio_SolveIK(int iThigh, int iKnee, int iFoot, Vector &targetFoot, matrix3x4_t *pBoneToWorld)
|
||
{
|
||
Vector worldFoot, worldKnee, worldThigh;
|
||
|
||
MatrixPosition(pBoneToWorld[iThigh], worldThigh);
|
||
MatrixPosition(pBoneToWorld[iKnee], worldKnee);
|
||
MatrixPosition(pBoneToWorld[iFoot], worldFoot);
|
||
|
||
//debugLine( worldThigh, worldKnee, 0, 0, 255, true, 0 );
|
||
//debugLine( worldKnee, worldFoot, 0, 0, 255, true, 0 );
|
||
|
||
Vector ikFoot, ikKnee;
|
||
|
||
ikFoot = targetFoot - worldThigh;
|
||
ikKnee = worldKnee - worldThigh;
|
||
|
||
float l1 = (worldKnee - worldThigh).Length();
|
||
float l2 = (worldFoot - worldKnee).Length();
|
||
float l3 = (worldFoot - worldThigh).Length();
|
||
|
||
// leg too straight to figure out knee?
|
||
if (l3 > (l1 + l2) * KNEEMAX_EPSILON)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
Vector ikHalf = (worldFoot - worldThigh) * (l1 / l3);
|
||
|
||
// FIXME: what to do when the knee completely straight?
|
||
Vector ikKneeDir = ikKnee - ikHalf;
|
||
VectorNormalize(ikKneeDir);
|
||
|
||
return Studio_SolveIK(iThigh, iKnee, iFoot, targetFoot, worldKnee, ikKneeDir, pBoneToWorld);
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Realign the matrix so that its X axis points along the desired axis.
|
||
//-----------------------------------------------------------------------------
|
||
void Studio_AlignIKMatrix(matrix3x4_t &mMat, const Vector &vAlignTo)
|
||
{
|
||
Vector tmp1, tmp2, tmp3;
|
||
|
||
// Column 0 (X) becomes the vector.
|
||
tmp1 = vAlignTo;
|
||
VectorNormalize(tmp1);
|
||
MatrixSetColumn(tmp1, 0, mMat);
|
||
|
||
// Column 1 (Y) is the cross of the vector and column 2 (Z).
|
||
MatrixGetColumn(mMat, 2, tmp3);
|
||
tmp2 = tmp3.Cross(tmp1);
|
||
VectorNormalize(tmp2);
|
||
// FIXME: check for X being too near to Z
|
||
MatrixSetColumn(tmp2, 1, mMat);
|
||
|
||
// Column 2 (Z) is the cross of columns 0 (X) and 1 (Y).
|
||
tmp3 = tmp1.Cross(tmp2);
|
||
MatrixSetColumn(tmp3, 2, mMat);
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Solve Knee position for a known hip and foot location, and a known knee direction
|
||
//-----------------------------------------------------------------------------
|
||
|
||
bool Studio_SolveIK(int iThigh, int iKnee, int iFoot, Vector &targetFoot, Vector &targetKneePos, Vector &targetKneeDir, matrix3x4_t *pBoneToWorld)
|
||
{
|
||
Vector worldFoot, worldKnee, worldThigh;
|
||
|
||
MatrixPosition(pBoneToWorld[iThigh], worldThigh);
|
||
MatrixPosition(pBoneToWorld[iKnee], worldKnee);
|
||
MatrixPosition(pBoneToWorld[iFoot], worldFoot);
|
||
|
||
//debugLine( worldThigh, worldKnee, 0, 0, 255, true, 0 );
|
||
//debugLine( worldThigh, worldThigh + targetKneeDir, 0, 0, 255, true, 0 );
|
||
// debugLine( worldKnee, targetKnee, 0, 0, 255, true, 0 );
|
||
|
||
Vector ikFoot, ikTargetKnee, ikKnee;
|
||
|
||
ikFoot = targetFoot - worldThigh;
|
||
ikKnee = targetKneePos - worldThigh;
|
||
|
||
float l1 = (worldKnee - worldThigh).Length();
|
||
float l2 = (worldFoot - worldKnee).Length();
|
||
|
||
// exaggerate knee targets for legs that are nearly straight
|
||
// FIXME: should be configurable, and the ikKnee should be from the original animation, not modifed
|
||
float d = (targetFoot - worldThigh).Length() - min(l1, l2);
|
||
d = max(l1 + l2, d);
|
||
// FIXME: too short knee directions cause trouble
|
||
d = d * 100;
|
||
|
||
ikTargetKnee = ikKnee + targetKneeDir * d;
|
||
|
||
// debugLine( worldKnee, worldThigh + ikTargetKnee, 0, 0, 255, true, 0 );
|
||
|
||
int color[3] = { 0, 255, 0 };
|
||
|
||
// too far away? (0.9998 is about 1 degree)
|
||
if (ikFoot.Length() > (l1 + l2) * KNEEMAX_EPSILON)
|
||
{
|
||
VectorNormalize(ikFoot);
|
||
VectorScale(ikFoot, (l1 + l2) * KNEEMAX_EPSILON, ikFoot);
|
||
color[0] = 255; color[1] = 0; color[2] = 0;
|
||
}
|
||
|
||
// too close?
|
||
// limit distance to about an 80 degree knee bend
|
||
float minDist = max(fabs(l1 - l2) * 1.15, min(l1, l2) * 0.15);
|
||
if (ikFoot.Length() < minDist)
|
||
{
|
||
// too close to get an accurate vector, just use original vector
|
||
ikFoot = (worldFoot - worldThigh);
|
||
VectorNormalize(ikFoot);
|
||
VectorScale(ikFoot, minDist, ikFoot);
|
||
}
|
||
|
||
CIKSolver ik;
|
||
if (ik.solve(l1, l2, ikFoot.Base(), ikTargetKnee.Base(), ikKnee.Base()))
|
||
{
|
||
matrix3x4_t& mWorldThigh = pBoneToWorld[iThigh];
|
||
matrix3x4_t& mWorldKnee = pBoneToWorld[iKnee];
|
||
matrix3x4_t& mWorldFoot = pBoneToWorld[iFoot];
|
||
|
||
//debugLine( worldThigh, ikKnee + worldThigh, 255, 0, 0, true, 0 );
|
||
//debugLine( ikKnee + worldThigh, ikFoot + worldThigh, 255, 0, 0, true,0 );
|
||
|
||
// debugLine( worldThigh, ikKnee + worldThigh, color[0], color[1], color[2], true, 0 );
|
||
// debugLine( ikKnee + worldThigh, ikFoot + worldThigh, color[0], color[1], color[2], true,0 );
|
||
|
||
|
||
// build transformation matrix for thigh
|
||
Studio_AlignIKMatrix(mWorldThigh, ikKnee);
|
||
Studio_AlignIKMatrix(mWorldKnee, ikFoot - ikKnee);
|
||
|
||
|
||
mWorldKnee[0][3] = ikKnee.x + worldThigh.x;
|
||
mWorldKnee[1][3] = ikKnee.y + worldThigh.y;
|
||
mWorldKnee[2][3] = ikKnee.z + worldThigh.z;
|
||
|
||
mWorldFoot[0][3] = ikFoot.x + worldThigh.x;
|
||
mWorldFoot[1][3] = ikFoot.y + worldThigh.y;
|
||
mWorldFoot[2][3] = ikFoot.z + worldThigh.z;
|
||
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
/*
|
||
debugLine( worldThigh, worldThigh + ikKnee, 255, 0, 0, true, 0 );
|
||
debugLine( worldThigh + ikKnee, worldThigh + ikFoot, 255, 0, 0, true, 0 );
|
||
debugLine( worldThigh + ikFoot, worldThigh, 255, 0, 0, true, 0 );
|
||
debugLine( worldThigh + ikKnee, worldThigh + ikTargetKnee, 255, 0, 0, true, 0 );
|
||
*/
|
||
return false;
|
||
}
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
float Studio_IKRuleWeight(mstudioikrule_t &ikRule, const mstudioanimdesc_t *panim, float flCycle, int &iFrame, float &fraq)
|
||
{
|
||
if (ikRule.end > 1.0f && flCycle < ikRule.start)
|
||
{
|
||
flCycle = flCycle + 1.0f;
|
||
}
|
||
|
||
float value = 0.0f;
|
||
fraq = (panim->numframes - 1) * (flCycle - ikRule.start) + ikRule.iStart;
|
||
iFrame = (int)fraq;
|
||
fraq = fraq - iFrame;
|
||
|
||
if (flCycle < ikRule.start)
|
||
{
|
||
iFrame = ikRule.iStart;
|
||
fraq = 0.0f;
|
||
return 0.0f;
|
||
}
|
||
else if (flCycle < ikRule.peak)
|
||
{
|
||
value = (flCycle - ikRule.start) / (ikRule.peak - ikRule.start);
|
||
}
|
||
else if (flCycle < ikRule.tail)
|
||
{
|
||
return 1.0f;
|
||
}
|
||
else if (flCycle < ikRule.end)
|
||
{
|
||
value = 1.0f - ((flCycle - ikRule.tail) / (ikRule.end - ikRule.tail));
|
||
}
|
||
else
|
||
{
|
||
fraq = (panim->numframes - 1) * (ikRule.end - ikRule.start) + ikRule.iStart;
|
||
iFrame = (int)fraq;
|
||
fraq = fraq - iFrame;
|
||
}
|
||
return SimpleSpline(value);
|
||
}
|
||
|
||
|
||
float Studio_IKRuleWeight(ikcontextikrule_t &ikRule, float flCycle)
|
||
{
|
||
if (ikRule.end > 1.0f && flCycle < ikRule.start)
|
||
{
|
||
flCycle = flCycle + 1.0f;
|
||
}
|
||
|
||
float value = 0.0f;
|
||
if (flCycle < ikRule.start)
|
||
{
|
||
return 0.0f;
|
||
}
|
||
else if (flCycle < ikRule.peak)
|
||
{
|
||
value = (flCycle - ikRule.start) / (ikRule.peak - ikRule.start);
|
||
}
|
||
else if (flCycle < ikRule.tail)
|
||
{
|
||
return 1.0f;
|
||
}
|
||
else if (flCycle < ikRule.end)
|
||
{
|
||
value = 1.0f - ((flCycle - ikRule.tail) / (ikRule.end - ikRule.tail));
|
||
}
|
||
return 3.0f * value * value - 2.0f * value * value * value;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
bool Studio_IKShouldLatch(ikcontextikrule_t &ikRule, float flCycle)
|
||
{
|
||
if (ikRule.end > 1.0f && flCycle < ikRule.start)
|
||
{
|
||
flCycle = flCycle + 1.0f;
|
||
}
|
||
|
||
if (flCycle < ikRule.peak)
|
||
{
|
||
return false;
|
||
}
|
||
else if (flCycle < ikRule.end)
|
||
{
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
float Studio_IKTail(ikcontextikrule_t &ikRule, float flCycle)
|
||
{
|
||
if (ikRule.end > 1.0f && flCycle < ikRule.start)
|
||
{
|
||
flCycle = flCycle + 1.0f;
|
||
}
|
||
|
||
if (flCycle <= ikRule.tail)
|
||
{
|
||
return 0.0f;
|
||
}
|
||
else if (flCycle < ikRule.end)
|
||
{
|
||
return ((flCycle - ikRule.tail) / (ikRule.end - ikRule.tail));
|
||
}
|
||
return 0.0;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
|
||
bool Studio_IKAnimationError(const CStudioHdr *pStudioHdr, mstudioikrule_t *pRule, const mstudioanimdesc_t *panim, float flCycle, Vector &pos, Quaternion &q, float &flWeight)
|
||
{
|
||
float fraq;
|
||
int iFrame;
|
||
|
||
flWeight = Studio_IKRuleWeight(*pRule, panim, flCycle, iFrame, fraq);
|
||
Assert(fraq >= 0.0 && fraq < 1.0);
|
||
Assert(flWeight >= 0.0f && flWeight <= 1.0f);
|
||
|
||
// This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up
|
||
flWeight = clamp(flWeight, 0.0f, 1.0f);
|
||
|
||
if (pRule->type != IK_GROUND && flWeight < 0.0001)
|
||
return false;
|
||
|
||
mstudioikerror_t *pError = pRule->pError(iFrame);
|
||
if (pError != NULL)
|
||
{
|
||
if (fraq < 0.001)
|
||
{
|
||
q = pError[0].q;
|
||
pos = pError[0].pos;
|
||
}
|
||
else
|
||
{
|
||
QuaternionBlend(pError[0].q, pError[1].q, fraq, q);
|
||
pos = pError[0].pos * (1.0f - fraq) + pError[1].pos * fraq;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
mstudiocompressedikerror_t *pCompressed = pRule->pCompressedError();
|
||
if (pCompressed != NULL)
|
||
{
|
||
CalcDecompressedAnimation(pCompressed, iFrame - pRule->iStart, fraq, pos, q);
|
||
return true;
|
||
}
|
||
// no data, disable IK rule
|
||
Assert(0);
|
||
flWeight = 0.0f;
|
||
return false;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: For a specific sequence:rule, find where it starts, stops, and what
|
||
// the estimated offset from the connection point is.
|
||
// return true if the rule is within bounds.
|
||
//-----------------------------------------------------------------------------
|
||
|
||
bool Studio_IKSequenceError(const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, float flCycle, int iRule, const float poseParameter[], mstudioanimdesc_t *panim[4], float weight[4], ikcontextikrule_t &ikRule)
|
||
{
|
||
int i;
|
||
|
||
memset(&ikRule, 0, sizeof(ikRule));
|
||
ikRule.start = ikRule.peak = ikRule.tail = ikRule.end = 0;
|
||
|
||
|
||
mstudioikrule_t *prevRule = NULL;
|
||
|
||
// find overall influence
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
if (weight[i])
|
||
{
|
||
if (iRule >= panim[i]->numikrules || panim[i]->numikrules != panim[0]->numikrules)
|
||
{
|
||
Assert(0);
|
||
return false;
|
||
}
|
||
|
||
mstudioikrule_t *pRule = panim[i]->pIKRule(iRule);
|
||
if (pRule == NULL)
|
||
return false;
|
||
|
||
float dt = 0.0;
|
||
if (prevRule != NULL)
|
||
{
|
||
if (pRule->start - prevRule->start > 0.5)
|
||
{
|
||
dt = -1.0;
|
||
}
|
||
else if (pRule->start - prevRule->start < -0.5)
|
||
{
|
||
dt = 1.0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
prevRule = pRule;
|
||
}
|
||
|
||
ikRule.start += (pRule->start + dt) * weight[i];
|
||
ikRule.peak += (pRule->peak + dt) * weight[i];
|
||
ikRule.tail += (pRule->tail + dt) * weight[i];
|
||
ikRule.end += (pRule->end + dt) * weight[i];
|
||
}
|
||
}
|
||
if (ikRule.start > 1.0)
|
||
{
|
||
ikRule.start -= 1.0;
|
||
ikRule.peak -= 1.0;
|
||
ikRule.tail -= 1.0;
|
||
ikRule.end -= 1.0;
|
||
}
|
||
else if (ikRule.start < 0.0)
|
||
{
|
||
ikRule.start += 1.0;
|
||
ikRule.peak += 1.0;
|
||
ikRule.tail += 1.0;
|
||
ikRule.end += 1.0;
|
||
}
|
||
|
||
ikRule.flWeight = Studio_IKRuleWeight(ikRule, flCycle);
|
||
if (ikRule.flWeight <= 0.001f)
|
||
{
|
||
// go ahead and allow IK_GROUND rules a virtual looping section
|
||
if (panim[0]->pIKRule(iRule) == NULL)
|
||
return false;
|
||
if ((panim[0]->flags & STUDIO_LOOPING) && panim[0]->pIKRule(iRule)->type == IK_GROUND && ikRule.end - ikRule.start > 0.75)
|
||
{
|
||
ikRule.flWeight = 0.001;
|
||
flCycle = ikRule.end - 0.001;
|
||
}
|
||
else
|
||
{
|
||
return false;
|
||
}
|
||
}
|
||
|
||
Assert(ikRule.flWeight > 0.0f);
|
||
|
||
ikRule.pos.Init();
|
||
ikRule.q.Init();
|
||
|
||
// find target error
|
||
float total = 0.0f;
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
if (weight[i])
|
||
{
|
||
Vector pos1;
|
||
Quaternion q1;
|
||
float w;
|
||
|
||
mstudioikrule_t *pRule = panim[i]->pIKRule(iRule);
|
||
if (pRule == NULL)
|
||
return false;
|
||
|
||
ikRule.chain = pRule->chain; // FIXME: this is anim local
|
||
ikRule.bone = pRule->bone; // FIXME: this is anim local
|
||
ikRule.type = pRule->type;
|
||
ikRule.slot = pRule->slot;
|
||
|
||
ikRule.height += pRule->height * weight[i];
|
||
ikRule.floor += pRule->floor * weight[i];
|
||
ikRule.radius += pRule->radius * weight[i];
|
||
ikRule.drop += pRule->drop * weight[i];
|
||
ikRule.top += pRule->top * weight[i];
|
||
|
||
// keep track of tail condition
|
||
ikRule.release += Studio_IKTail(ikRule, flCycle) * weight[i];
|
||
|
||
// only check rules with error values
|
||
switch (ikRule.type)
|
||
{
|
||
case IK_SELF:
|
||
case IK_WORLD:
|
||
case IK_GROUND:
|
||
case IK_ATTACHMENT:
|
||
{
|
||
int bResult = Studio_IKAnimationError(pStudioHdr, pRule, panim[i], flCycle, pos1, q1, w);
|
||
|
||
if (bResult)
|
||
{
|
||
ikRule.pos = ikRule.pos + pos1 * weight[i];
|
||
QuaternionAccumulate(ikRule.q, weight[i], q1, ikRule.q);
|
||
total += weight[i];
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
total += weight[i];
|
||
break;
|
||
}
|
||
|
||
ikRule.latched = Studio_IKShouldLatch(ikRule, flCycle) * ikRule.flWeight;
|
||
|
||
if (ikRule.type == IK_ATTACHMENT)
|
||
{
|
||
ikRule.szLabel = pRule->pszAttachment();
|
||
}
|
||
}
|
||
}
|
||
|
||
if (total <= 0.0001f)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
if (total < 0.999f)
|
||
{
|
||
VectorScale(ikRule.pos, 1.0f / total, ikRule.pos);
|
||
QuaternionScale(ikRule.q, 1.0f / total, ikRule.q);
|
||
}
|
||
|
||
if (ikRule.type == IK_SELF && ikRule.bone != -1)
|
||
{
|
||
// FIXME: this is anim local, not seq local!
|
||
ikRule.bone = pStudioHdr->RemapSeqBone(iSequence, ikRule.bone);
|
||
if (ikRule.bone == -1)
|
||
return false;
|
||
}
|
||
|
||
QuaternionNormalize(ikRule.q);
|
||
return true;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
|
||
CIKContext::CIKContext()
|
||
{
|
||
m_target.EnsureCapacity(12); // FIXME: this sucks, shouldn't it be grown?
|
||
m_iFramecounter = -1;
|
||
m_pStudioHdr = NULL;
|
||
m_flTime = -1.0f;
|
||
m_target.SetSize(0);
|
||
}
|
||
|
||
|
||
void CIKContext::Init(const CStudioHdr *pStudioHdr, const QAngle &angles, const Vector &pos, float flTime, int iFramecounter, int boneMask)
|
||
{
|
||
m_pStudioHdr = pStudioHdr;
|
||
m_ikChainRule.RemoveAll(); // m_numikrules = 0;
|
||
if (pStudioHdr->numikchains())
|
||
{
|
||
m_ikChainRule.SetSize(pStudioHdr->numikchains());
|
||
|
||
// FIXME: Brutal hackery to prevent a crash
|
||
if (m_target.Count() == 0)
|
||
{
|
||
m_target.SetSize(12);
|
||
memset(m_target.Base(), 0, sizeof(m_target[0])*m_target.Count());
|
||
ClearTargets();
|
||
}
|
||
|
||
}
|
||
else
|
||
{
|
||
m_target.SetSize(0);
|
||
}
|
||
AngleMatrix(angles, pos, m_rootxform);
|
||
m_iFramecounter = iFramecounter;
|
||
m_flTime = flTime;
|
||
m_boneMask = boneMask;
|
||
}
|
||
|
||
void CIKContext::AddDependencies(mstudioseqdesc_t &seqdesc, int iSequence, float flCycle, const float poseParameters[], float flWeight)
|
||
{
|
||
int i;
|
||
|
||
if (m_pStudioHdr->numikchains() == 0)
|
||
return;
|
||
|
||
if (seqdesc.numikrules == 0)
|
||
return;
|
||
|
||
ikcontextikrule_t ikrule;
|
||
|
||
Assert(flWeight >= 0.0f && flWeight <= 1.0f);
|
||
// This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up
|
||
flWeight = clamp(flWeight, 0.0f, 1.0f);
|
||
|
||
// unify this
|
||
if (seqdesc.flags & STUDIO_REALTIME)
|
||
{
|
||
float cps = Studio_CPS(m_pStudioHdr, seqdesc, iSequence, poseParameters);
|
||
flCycle = m_flTime * cps;
|
||
flCycle = flCycle - (int)flCycle;
|
||
}
|
||
else if (flCycle < 0 || flCycle >= 1)
|
||
{
|
||
if (seqdesc.flags & STUDIO_LOOPING)
|
||
{
|
||
flCycle = flCycle - (int)flCycle;
|
||
if (flCycle < 0) flCycle += 1;
|
||
}
|
||
else
|
||
{
|
||
flCycle = max(0.0, min(flCycle, 0.9999));
|
||
}
|
||
}
|
||
|
||
mstudioanimdesc_t *panim[4];
|
||
float weight[4];
|
||
|
||
Studio_SeqAnims(m_pStudioHdr, seqdesc, iSequence, poseParameters, panim, weight);
|
||
|
||
// FIXME: add proper number of rules!!!
|
||
for (i = 0; i < seqdesc.numikrules; i++)
|
||
{
|
||
if (!Studio_IKSequenceError(m_pStudioHdr, seqdesc, iSequence, flCycle, i, poseParameters, panim, weight, ikrule))
|
||
continue;
|
||
|
||
// don't add rule if the bone isn't going to be calculated
|
||
int bone = m_pStudioHdr->pIKChain(ikrule.chain)->pLink(2)->bone;
|
||
if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask))
|
||
continue;
|
||
|
||
// or if its relative bone isn't going to be calculated
|
||
if (ikrule.bone >= 0 && !(m_pStudioHdr->boneFlags(ikrule.bone) & m_boneMask))
|
||
continue;
|
||
|
||
// FIXME: Brutal hackery to prevent a crash
|
||
if (m_target.Count() == 0)
|
||
{
|
||
m_target.SetSize(12);
|
||
memset(m_target.Base(), 0, sizeof(m_target[0])*m_target.Count());
|
||
ClearTargets();
|
||
}
|
||
|
||
ikrule.flRuleWeight = flWeight;
|
||
|
||
if (ikrule.flRuleWeight * ikrule.flWeight > 0.999)
|
||
{
|
||
if (ikrule.type != IK_UNLATCH)
|
||
{
|
||
// clear out chain if rule is 100%
|
||
m_ikChainRule.Element(ikrule.chain).RemoveAll();
|
||
if (ikrule.type == IK_RELEASE)
|
||
{
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
|
||
int nIndex = m_ikChainRule.Element(ikrule.chain).AddToTail();
|
||
m_ikChainRule.Element(ikrule.chain).Element(nIndex) = ikrule;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKContext::AddAutoplayLocks(Vector pos[], Quaternion q[])
|
||
{
|
||
// skip all array access if no autoplay locks.
|
||
if (m_pStudioHdr->GetNumIKAutoplayLocks() == 0)
|
||
{
|
||
return;
|
||
}
|
||
|
||
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
|
||
CBoneBitList boneComputed;
|
||
|
||
int ikOffset = m_ikLock.AddMultipleToTail(m_pStudioHdr->GetNumIKAutoplayLocks());
|
||
memset(&m_ikLock[ikOffset], 0, sizeof(ikcontextikrule_t)*m_pStudioHdr->GetNumIKAutoplayLocks());
|
||
|
||
for (int i = 0; i < m_pStudioHdr->GetNumIKAutoplayLocks(); i++)
|
||
{
|
||
const mstudioiklock_t &lock = ((CStudioHdr *)m_pStudioHdr)->pIKAutoplayLock(i);
|
||
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(lock.chain);
|
||
int bone = pchain->pLink(2)->bone;
|
||
|
||
// don't bother with iklock if the bone isn't going to be calculated
|
||
if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask))
|
||
continue;
|
||
|
||
// eval current ik'd bone
|
||
BuildBoneChain(pos, q, bone, boneToWorld, boneComputed);
|
||
|
||
ikcontextikrule_t &ikrule = m_ikLock[i + ikOffset];
|
||
|
||
ikrule.chain = lock.chain;
|
||
ikrule.slot = i;
|
||
ikrule.type = IK_WORLD;
|
||
|
||
MatrixAngles(boneToWorld[bone], ikrule.q, ikrule.pos);
|
||
|
||
// save off current knee direction
|
||
if (pchain->pLink(0)->kneeDir.LengthSqr() > 0.0)
|
||
{
|
||
Vector tmp = pchain->pLink(0)->kneeDir;
|
||
VectorRotate(pchain->pLink(0)->kneeDir, boneToWorld[pchain->pLink(0)->bone], ikrule.kneeDir);
|
||
MatrixPosition(boneToWorld[pchain->pLink(1)->bone], ikrule.kneePos);
|
||
}
|
||
else
|
||
{
|
||
ikrule.kneeDir.Init();
|
||
}
|
||
}
|
||
g_MatrixPool.Free(boneToWorld);
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKContext::AddSequenceLocks(mstudioseqdesc_t &seqdesc, Vector pos[], Quaternion q[])
|
||
{
|
||
if (m_pStudioHdr->numikchains() == 0)
|
||
{
|
||
return;
|
||
}
|
||
|
||
if (seqdesc.numiklocks == 0)
|
||
{
|
||
return;
|
||
}
|
||
|
||
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
|
||
CBoneBitList boneComputed;
|
||
|
||
int ikOffset = m_ikLock.AddMultipleToTail(seqdesc.numiklocks);
|
||
memset(&m_ikLock[ikOffset], 0, sizeof(ikcontextikrule_t) * seqdesc.numiklocks);
|
||
|
||
for (int i = 0; i < seqdesc.numiklocks; i++)
|
||
{
|
||
mstudioiklock_t *plock = seqdesc.pIKLock(i);
|
||
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(plock->chain);
|
||
int bone = pchain->pLink(2)->bone;
|
||
|
||
// don't bother with iklock if the bone isn't going to be calculated
|
||
if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask))
|
||
continue;
|
||
|
||
// eval current ik'd bone
|
||
BuildBoneChain(pos, q, bone, boneToWorld, boneComputed);
|
||
|
||
ikcontextikrule_t &ikrule = m_ikLock[i + ikOffset];
|
||
ikrule.chain = i;
|
||
ikrule.slot = i;
|
||
ikrule.type = IK_WORLD;
|
||
|
||
MatrixAngles(boneToWorld[bone], ikrule.q, ikrule.pos);
|
||
|
||
// save off current knee direction
|
||
if (pchain->pLink(0)->kneeDir.LengthSqr() > 0.0)
|
||
{
|
||
VectorRotate(pchain->pLink(0)->kneeDir, boneToWorld[pchain->pLink(0)->bone], ikrule.kneeDir);
|
||
}
|
||
else
|
||
{
|
||
ikrule.kneeDir.Init();
|
||
}
|
||
}
|
||
g_MatrixPool.Free(boneToWorld);
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: build boneToWorld transforms for a specific bone
|
||
//-----------------------------------------------------------------------------
|
||
void CIKContext::BuildBoneChain(
|
||
const Vector pos[],
|
||
const Quaternion q[],
|
||
int iBone,
|
||
matrix3x4_t *pBoneToWorld,
|
||
CBoneBitList &boneComputed)
|
||
{
|
||
Assert(m_pStudioHdr->boneFlags(iBone) & m_boneMask);
|
||
::BuildBoneChain(m_pStudioHdr, m_rootxform, pos, q, iBone, pBoneToWorld, boneComputed);
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: build boneToWorld transforms for a specific bone
|
||
//-----------------------------------------------------------------------------
|
||
void BuildBoneChain(
|
||
const CStudioHdr *pStudioHdr,
|
||
const matrix3x4_t &rootxform,
|
||
const Vector pos[],
|
||
const Quaternion q[],
|
||
int iBone,
|
||
matrix3x4_t *pBoneToWorld,
|
||
CBoneBitList &boneComputed)
|
||
{
|
||
if (boneComputed.IsBoneMarked(iBone))
|
||
return;
|
||
|
||
matrix3x4_t bonematrix;
|
||
QuaternionMatrix(q[iBone], pos[iBone], bonematrix);
|
||
|
||
int parent = pStudioHdr->boneParent(iBone);
|
||
if (parent == -1)
|
||
{
|
||
ConcatTransforms(rootxform, bonematrix, pBoneToWorld[iBone]);
|
||
}
|
||
else
|
||
{
|
||
// evil recursive!!!
|
||
BuildBoneChain(pStudioHdr, rootxform, pos, q, parent, pBoneToWorld, boneComputed);
|
||
ConcatTransforms(pBoneToWorld[parent], bonematrix, pBoneToWorld[iBone]);
|
||
}
|
||
boneComputed.MarkBone(iBone);
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: turn a specific bones boneToWorld transform into a pos and q in parents bonespace
|
||
//-----------------------------------------------------------------------------
|
||
void SolveBone(
|
||
const CStudioHdr *pStudioHdr,
|
||
int iBone,
|
||
matrix3x4_t *pBoneToWorld,
|
||
Vector pos[],
|
||
Quaternion q[]
|
||
)
|
||
{
|
||
int iParent = pStudioHdr->boneParent(iBone);
|
||
|
||
matrix3x4_t worldToBone;
|
||
MatrixInvert(pBoneToWorld[iParent], worldToBone);
|
||
|
||
matrix3x4_t local;
|
||
ConcatTransforms(worldToBone, pBoneToWorld[iBone], local);
|
||
|
||
MatrixAngles(local, q[iBone], pos[iBone]);
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKTarget::SetOwner(int entindex, const Vector &pos, const QAngle &angles)
|
||
{
|
||
latched.owner = entindex;
|
||
latched.absOrigin = pos;
|
||
latched.absAngles = angles;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKTarget::ClearOwner(void)
|
||
{
|
||
latched.owner = -1;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
int CIKTarget::GetOwner(void)
|
||
{
|
||
return latched.owner;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: update the latched IK values that are in a moving frame of reference
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKTarget::UpdateOwner(int entindex, const Vector &pos, const QAngle &angles)
|
||
{
|
||
if (pos == latched.absOrigin && angles == latched.absAngles)
|
||
return;
|
||
|
||
matrix3x4_t in, out;
|
||
AngleMatrix(angles, pos, in);
|
||
AngleIMatrix(latched.absAngles, latched.absOrigin, out);
|
||
|
||
matrix3x4_t tmp1, tmp2;
|
||
QuaternionMatrix(latched.q, latched.pos, tmp1);
|
||
ConcatTransforms(out, tmp1, tmp2);
|
||
ConcatTransforms(in, tmp2, tmp1);
|
||
MatrixAngles(tmp1, latched.q, latched.pos);
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: sets the ground position of an ik target
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKTarget::SetPos(const Vector &pos)
|
||
{
|
||
est.pos = pos;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: sets the ground "identity" orientation of an ik target
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKTarget::SetAngles(const QAngle &angles)
|
||
{
|
||
AngleQuaternion(angles, est.q);
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: sets the ground "identity" orientation of an ik target
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKTarget::SetQuaternion(const Quaternion &q)
|
||
{
|
||
est.q = q;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: calculates a ground "identity" orientation based on the surface
|
||
// normal of the ground and the desired ground identity orientation
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKTarget::SetNormal(const Vector &normal)
|
||
{
|
||
// recalculate foot angle based on slope of surface
|
||
matrix3x4_t m1;
|
||
Vector forward, right;
|
||
QuaternionMatrix(est.q, m1);
|
||
|
||
MatrixGetColumn(m1, 1, right);
|
||
forward = CrossProduct(right, normal);
|
||
right = CrossProduct(normal, forward);
|
||
MatrixSetColumn(forward, 0, m1);
|
||
MatrixSetColumn(right, 1, m1);
|
||
MatrixSetColumn(normal, 2, m1);
|
||
QAngle a1;
|
||
Vector p1;
|
||
MatrixAngles(m1, est.q, p1);
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: estimates the ground impact at the center location assuming a the edge of
|
||
// an Z axis aligned disc collided with it the surface.
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKTarget::SetPosWithNormalOffset(const Vector &pos, const Vector &normal)
|
||
{
|
||
// assume it's a disc edge intersecting with the floor, so try to estimate the z location of the center
|
||
est.pos = pos;
|
||
if (normal.z > 0.9999)
|
||
{
|
||
return;
|
||
}
|
||
// clamp at 45 degrees
|
||
else if (normal.z > 0.707)
|
||
{
|
||
// tan == sin / cos
|
||
float tan = sqrt(1 - normal.z * normal.z) / normal.z;
|
||
est.pos.z = est.pos.z - est.radius * tan;
|
||
}
|
||
else
|
||
{
|
||
est.pos.z = est.pos.z - est.radius;
|
||
}
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKTarget::SetOnWorld(bool bOnWorld)
|
||
{
|
||
est.onWorld = bOnWorld;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
bool CIKTarget::IsActive()
|
||
{
|
||
return (est.flWeight > 0.0f);
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKTarget::IKFailed(void)
|
||
{
|
||
latched.deltaPos.Init();
|
||
latched.deltaQ.Init();
|
||
latched.pos = ideal.pos;
|
||
latched.q = ideal.q;
|
||
est.latched = 0.0;
|
||
est.flWeight = 0.0;
|
||
est.onWorld = false;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKTarget::MoveReferenceFrame(Vector &deltaPos, QAngle &deltaAngles)
|
||
{
|
||
est.pos -= deltaPos;
|
||
latched.pos -= deltaPos;
|
||
offset.pos -= deltaPos;
|
||
ideal.pos -= deltaPos;
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Invalidate any IK locks.
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKContext::ClearTargets(void)
|
||
{
|
||
int i;
|
||
for (i = 0; i < m_target.Count(); i++)
|
||
{
|
||
m_target[i].latched.iFramecounter = -9999;
|
||
}
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Run through the rules that survived and turn a specific bones boneToWorld
|
||
// transform into a pos and q in parents bonespace
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKContext::UpdateTargets(Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList &boneComputed)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0; i < m_target.Count(); i++)
|
||
{
|
||
m_target[i].est.flWeight = 0.0f;
|
||
m_target[i].est.latched = 1.0f;
|
||
m_target[i].est.release = 1.0f;
|
||
m_target[i].est.height = 0.0f;
|
||
m_target[i].est.floor = 0.0f;
|
||
m_target[i].est.radius = 0.0f;
|
||
m_target[i].offset.pos.Init();
|
||
m_target[i].offset.q.Init();
|
||
}
|
||
|
||
AutoIKRelease();
|
||
|
||
for (j = 0; j < m_ikChainRule.Count(); j++)
|
||
{
|
||
for (i = 0; i < m_ikChainRule.Element(j).Count(); i++)
|
||
{
|
||
ikcontextikrule_t *pRule = &m_ikChainRule.Element(j).Element(i);
|
||
|
||
// ikchainresult_t *pChainRule = &chainRule[ m_ikRule[i].chain ];
|
||
|
||
switch (pRule->type)
|
||
{
|
||
case IK_ATTACHMENT:
|
||
case IK_GROUND:
|
||
// case IK_SELF:
|
||
{
|
||
matrix3x4_t footTarget;
|
||
CIKTarget *pTarget = &m_target[pRule->slot];
|
||
pTarget->chain = pRule->chain;
|
||
pTarget->type = pRule->type;
|
||
|
||
if (pRule->type == IK_ATTACHMENT)
|
||
{
|
||
pTarget->offset.pAttachmentName = pRule->szLabel;
|
||
}
|
||
else
|
||
{
|
||
pTarget->offset.pAttachmentName = NULL;
|
||
}
|
||
|
||
if (pRule->flRuleWeight == 1.0f || pTarget->est.flWeight == 0.0f)
|
||
{
|
||
pTarget->offset.q = pRule->q;
|
||
pTarget->offset.pos = pRule->pos;
|
||
pTarget->est.height = pRule->height;
|
||
pTarget->est.floor = pRule->floor;
|
||
pTarget->est.radius = pRule->radius;
|
||
pTarget->est.latched = pRule->latched * pRule->flRuleWeight;
|
||
pTarget->est.release = pRule->release;
|
||
pTarget->est.flWeight = pRule->flWeight * pRule->flRuleWeight;
|
||
}
|
||
else
|
||
{
|
||
QuaternionSlerp(pTarget->offset.q, pRule->q, pRule->flRuleWeight, pTarget->offset.q);
|
||
pTarget->offset.pos = Lerp(pRule->flRuleWeight, pTarget->offset.pos, pRule->pos);
|
||
pTarget->est.height = Lerp(pRule->flRuleWeight, pTarget->est.height, pRule->height);
|
||
pTarget->est.floor = Lerp(pRule->flRuleWeight, pTarget->est.floor, pRule->floor);
|
||
pTarget->est.radius = Lerp(pRule->flRuleWeight, pTarget->est.radius, pRule->radius);
|
||
//pTarget->est.latched = Lerp( pRule->flRuleWeight, pTarget->est.latched, pRule->latched );
|
||
pTarget->est.latched = min(pTarget->est.latched, pRule->latched);
|
||
pTarget->est.release = Lerp(pRule->flRuleWeight, pTarget->est.release, pRule->release);
|
||
pTarget->est.flWeight = Lerp(pRule->flRuleWeight, pTarget->est.flWeight, pRule->flWeight);
|
||
}
|
||
|
||
if (pRule->type == IK_GROUND)
|
||
{
|
||
pTarget->latched.deltaPos.z = 0;
|
||
pTarget->est.pos.z = pTarget->est.floor + m_rootxform[2][3];
|
||
}
|
||
}
|
||
break;
|
||
case IK_UNLATCH:
|
||
{
|
||
CIKTarget *pTarget = &m_target[pRule->slot];
|
||
if (pRule->latched > 0.0)
|
||
pTarget->est.latched = 0.0;
|
||
else
|
||
pTarget->est.latched = min(pTarget->est.latched, 1.0f - pRule->flWeight);
|
||
}
|
||
break;
|
||
case IK_RELEASE:
|
||
{
|
||
CIKTarget *pTarget = &m_target[pRule->slot];
|
||
if (pRule->latched > 0.0)
|
||
pTarget->est.latched = 0.0;
|
||
else
|
||
pTarget->est.latched = min(pTarget->est.latched, 1.0f - pRule->flWeight);
|
||
|
||
pTarget->est.flWeight = (pTarget->est.flWeight) * (1 - pRule->flWeight * pRule->flRuleWeight);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < m_target.Count(); i++)
|
||
{
|
||
CIKTarget *pTarget = &m_target[i];
|
||
if (pTarget->est.flWeight > 0.0)
|
||
{
|
||
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(pTarget->chain);
|
||
// ikchainresult_t *pChainRule = &chainRule[ i ];
|
||
int bone = pchain->pLink(2)->bone;
|
||
|
||
// eval current ik'd bone
|
||
BuildBoneChain(pos, q, bone, boneToWorld, boneComputed);
|
||
|
||
// xform IK target error into world space
|
||
matrix3x4_t local;
|
||
matrix3x4_t worldFootpad;
|
||
QuaternionMatrix(pTarget->offset.q, pTarget->offset.pos, local);
|
||
MatrixInvert(local, local);
|
||
ConcatTransforms(boneToWorld[bone], local, worldFootpad);
|
||
|
||
if (pTarget->est.latched == 1.0)
|
||
{
|
||
pTarget->latched.bNeedsLatch = true;
|
||
}
|
||
else
|
||
{
|
||
pTarget->latched.bNeedsLatch = false;
|
||
}
|
||
|
||
// disable latched position if it looks invalid
|
||
if (m_iFramecounter < 0 || pTarget->latched.iFramecounter < m_iFramecounter - 1 || pTarget->latched.iFramecounter > m_iFramecounter)
|
||
{
|
||
pTarget->latched.bHasLatch = false;
|
||
pTarget->latched.influence = 0.0;
|
||
}
|
||
pTarget->latched.iFramecounter = m_iFramecounter;
|
||
|
||
// find ideal contact position
|
||
MatrixAngles(worldFootpad, pTarget->ideal.q, pTarget->ideal.pos);
|
||
pTarget->est.q = pTarget->ideal.q;
|
||
pTarget->est.pos = pTarget->ideal.pos;
|
||
|
||
float latched = pTarget->est.latched;
|
||
|
||
if (pTarget->latched.bHasLatch)
|
||
{
|
||
if (pTarget->est.latched == 1.0)
|
||
{
|
||
// keep track of latch position error from ideal contact position
|
||
pTarget->latched.deltaPos = pTarget->latched.pos - pTarget->est.pos;
|
||
QuaternionSM(-1, pTarget->est.q, pTarget->latched.q, pTarget->latched.deltaQ);
|
||
pTarget->est.q = pTarget->latched.q;
|
||
pTarget->est.pos = pTarget->latched.pos;
|
||
}
|
||
else if (pTarget->est.latched > 0.0)
|
||
{
|
||
// ramp out latch differences during decay phase of rule
|
||
if (latched > 0 && latched < pTarget->latched.influence)
|
||
{
|
||
// latching has decreased
|
||
float dt = pTarget->latched.influence - latched;
|
||
if (pTarget->latched.influence > 0.0)
|
||
dt = dt / pTarget->latched.influence;
|
||
|
||
VectorScale(pTarget->latched.deltaPos, (1 - dt), pTarget->latched.deltaPos);
|
||
QuaternionScale(pTarget->latched.deltaQ, (1 - dt), pTarget->latched.deltaQ);
|
||
}
|
||
|
||
// move ideal contact position by latched error factor
|
||
pTarget->est.pos = pTarget->est.pos + pTarget->latched.deltaPos;
|
||
QuaternionMA(pTarget->est.q, 1, pTarget->latched.deltaQ, pTarget->est.q);
|
||
pTarget->latched.q = pTarget->est.q;
|
||
pTarget->latched.pos = pTarget->est.pos;
|
||
}
|
||
else
|
||
{
|
||
pTarget->latched.bHasLatch = false;
|
||
pTarget->latched.q = pTarget->est.q;
|
||
pTarget->latched.pos = pTarget->est.pos;
|
||
pTarget->latched.deltaPos.Init();
|
||
pTarget->latched.deltaQ.Init();
|
||
}
|
||
pTarget->latched.influence = latched;
|
||
}
|
||
|
||
// check for illegal requests
|
||
Vector p1, p2, p3;
|
||
MatrixPosition(boneToWorld[pchain->pLink(0)->bone], p1); // hip
|
||
MatrixPosition(boneToWorld[pchain->pLink(1)->bone], p2); // knee
|
||
MatrixPosition(boneToWorld[pchain->pLink(2)->bone], p3); // foot
|
||
|
||
float d1 = (p2 - p1).Length();
|
||
float d2 = (p3 - p2).Length();
|
||
|
||
if (pTarget->latched.bHasLatch)
|
||
{
|
||
//float d3 = (p3 - p1).Length();
|
||
float d4 = (p3 + pTarget->latched.deltaPos - p1).Length();
|
||
|
||
// unstick feet when distance is too great
|
||
if ((d4 < fabs(d1 - d2) || d4 * 0.95 > d1 + d2) && pTarget->est.latched > 0.2)
|
||
{
|
||
pTarget->error.flTime = m_flTime;
|
||
}
|
||
|
||
// unstick feet when angle is too great
|
||
if (pTarget->est.latched > 0.2)
|
||
{
|
||
float d = fabs(pTarget->latched.deltaQ.w) * 2.0f - 1.0f; // QuaternionDotProduct( pTarget->latched.q, pTarget->est.q );
|
||
|
||
// FIXME: cos(45), make property of chain
|
||
if (d < 0.707)
|
||
{
|
||
pTarget->error.flTime = m_flTime;
|
||
}
|
||
}
|
||
}
|
||
|
||
Vector dt = pTarget->est.pos - p1;
|
||
pTarget->trace.hipToFoot = VectorNormalize(dt);
|
||
pTarget->trace.hipToKnee = d1;
|
||
pTarget->trace.kneeToFoot = d2;
|
||
pTarget->trace.hip = p1;
|
||
pTarget->trace.knee = p2;
|
||
pTarget->trace.closest = p1 + dt * (fabs(d1 - d2) * 1.01);
|
||
pTarget->trace.farthest = p1 + dt * (d1 + d2) * 0.99;
|
||
pTarget->trace.lowest = p1 + Vector(0, 0, -1) * (d1 + d2) * 0.99;
|
||
// pTarget->trace.endpos = pTarget->est.pos;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: insert release rules if the ik rules were in error
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKContext::AutoIKRelease(void)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < m_target.Count(); i++)
|
||
{
|
||
CIKTarget *pTarget = &m_target[i];
|
||
|
||
float dt = m_flTime - pTarget->error.flTime;
|
||
if (pTarget->error.bInError || dt < 0.5)
|
||
{
|
||
if (!pTarget->error.bInError)
|
||
{
|
||
pTarget->error.ramp = 0.0;
|
||
pTarget->error.flErrorTime = pTarget->error.flTime;
|
||
pTarget->error.bInError = true;
|
||
}
|
||
|
||
float ft = m_flTime - pTarget->error.flErrorTime;
|
||
if (dt < 0.25)
|
||
{
|
||
pTarget->error.ramp = min(pTarget->error.ramp + ft * 4.0, 1.0);
|
||
}
|
||
else
|
||
{
|
||
pTarget->error.ramp = max(pTarget->error.ramp - ft * 4.0, 0.0);
|
||
}
|
||
if (pTarget->error.ramp > 0.0)
|
||
{
|
||
ikcontextikrule_t ikrule;
|
||
|
||
ikrule.chain = pTarget->chain;
|
||
ikrule.bone = 0;
|
||
ikrule.type = IK_RELEASE;
|
||
ikrule.slot = i;
|
||
ikrule.flWeight = SimpleSpline(pTarget->error.ramp);
|
||
ikrule.flRuleWeight = 1.0;
|
||
ikrule.latched = dt < 0.25 ? 0.0 : ikrule.flWeight;
|
||
|
||
// don't bother with AutoIKRelease if the bone isn't going to be calculated
|
||
// this code is crashing for some unknown reason.
|
||
if (pTarget->chain >= 0 && pTarget->chain < m_pStudioHdr->numikchains())
|
||
{
|
||
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(pTarget->chain);
|
||
if (pchain != NULL)
|
||
{
|
||
int bone = pchain->pLink(2)->bone;
|
||
if (bone >= 0 && bone < m_pStudioHdr->numbones())
|
||
{
|
||
mstudiobone_t *pBone = m_pStudioHdr->pBone(bone);
|
||
if (pBone != NULL)
|
||
{
|
||
if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask))
|
||
{
|
||
pTarget->error.bInError = false;
|
||
continue;
|
||
}
|
||
/*
|
||
char buf[256];
|
||
sprintf( buf, "dt %.4f ft %.4f weight %.4f latched %.4f\n", dt, ft, ikrule.flWeight, ikrule.latched );
|
||
OutputDebugString( buf );
|
||
*/
|
||
|
||
int nIndex = m_ikChainRule.Element(ikrule.chain).AddToTail();
|
||
m_ikChainRule.Element(ikrule.chain).Element(nIndex) = ikrule;
|
||
}
|
||
else
|
||
{
|
||
DevWarning(1, "AutoIKRelease (%s) got a NULL pBone %d\n", m_pStudioHdr->pszName(), bone);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
DevWarning(1, "AutoIKRelease (%s) got an out of range bone %d (%d)\n", m_pStudioHdr->pszName(), bone, m_pStudioHdr->numbones());
|
||
}
|
||
}
|
||
else
|
||
{
|
||
DevWarning(1, "AutoIKRelease (%s) got a NULL pchain %d\n", m_pStudioHdr->pszName(), pTarget->chain);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
DevWarning(1, "AutoIKRelease (%s) got an out of range chain %d (%d)\n", m_pStudioHdr->pszName(), pTarget->chain, m_pStudioHdr->numikchains());
|
||
}
|
||
}
|
||
else
|
||
{
|
||
pTarget->error.bInError = false;
|
||
}
|
||
pTarget->error.flErrorTime = m_flTime;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
void CIKContext::SolveDependencies(Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList &boneComputed)
|
||
{
|
||
// ASSERT_NO_REENTRY();
|
||
|
||
matrix3x4_t worldTarget;
|
||
int i, j;
|
||
|
||
ikchainresult_t chainResult[32]; // allocate!!!
|
||
|
||
// init chain rules
|
||
for (i = 0; i < m_pStudioHdr->numikchains(); i++)
|
||
{
|
||
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(i);
|
||
ikchainresult_t *pChainResult = &chainResult[i];
|
||
int bone = pchain->pLink(2)->bone;
|
||
|
||
pChainResult->target = -1;
|
||
pChainResult->flWeight = 0.0;
|
||
|
||
// don't bother with chain if the bone isn't going to be calculated
|
||
if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask))
|
||
continue;
|
||
|
||
// eval current ik'd bone
|
||
BuildBoneChain(pos, q, bone, boneToWorld, boneComputed);
|
||
|
||
MatrixAngles(boneToWorld[bone], pChainResult->q, pChainResult->pos);
|
||
}
|
||
|
||
for (j = 0; j < m_ikChainRule.Count(); j++)
|
||
{
|
||
for (i = 0; i < m_ikChainRule.Element(j).Count(); i++)
|
||
{
|
||
ikcontextikrule_t *pRule = &m_ikChainRule.Element(j).Element(i);
|
||
ikchainresult_t *pChainResult = &chainResult[pRule->chain];
|
||
pChainResult->target = -1;
|
||
|
||
|
||
switch (pRule->type)
|
||
{
|
||
case IK_SELF:
|
||
{
|
||
// xform IK target error into world space
|
||
matrix3x4_t local;
|
||
QuaternionMatrix(pRule->q, pRule->pos, local);
|
||
// eval target bone space
|
||
if (pRule->bone != -1)
|
||
{
|
||
BuildBoneChain(pos, q, pRule->bone, boneToWorld, boneComputed);
|
||
ConcatTransforms(boneToWorld[pRule->bone], local, worldTarget);
|
||
}
|
||
else
|
||
{
|
||
ConcatTransforms(m_rootxform, local, worldTarget);
|
||
}
|
||
|
||
float flWeight = pRule->flWeight * pRule->flRuleWeight;
|
||
pChainResult->flWeight = pChainResult->flWeight * (1 - flWeight) + flWeight;
|
||
|
||
Vector p2;
|
||
Quaternion q2;
|
||
|
||
// target p and q
|
||
MatrixAngles(worldTarget, q2, p2);
|
||
|
||
// debugLine( pChainResult->pos, p2, 0, 0, 255, true, 0.1 );
|
||
|
||
// blend in position and angles
|
||
pChainResult->pos = pChainResult->pos * (1.0 - flWeight) + p2 * flWeight;
|
||
QuaternionSlerp(pChainResult->q, q2, flWeight, pChainResult->q);
|
||
}
|
||
break;
|
||
case IK_WORLD:
|
||
Assert(0);
|
||
break;
|
||
|
||
case IK_ATTACHMENT:
|
||
break;
|
||
|
||
case IK_GROUND:
|
||
break;
|
||
|
||
case IK_RELEASE:
|
||
{
|
||
// move target back towards original location
|
||
float flWeight = pRule->flWeight * pRule->flRuleWeight;
|
||
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(pRule->chain);
|
||
int bone = pchain->pLink(2)->bone;
|
||
|
||
Vector p2;
|
||
Quaternion q2;
|
||
|
||
BuildBoneChain(pos, q, bone, boneToWorld, boneComputed);
|
||
MatrixAngles(boneToWorld[bone], q2, p2);
|
||
|
||
// blend in position and angles
|
||
pChainResult->pos = pChainResult->pos * (1.0 - flWeight) + p2 * flWeight;
|
||
QuaternionSlerp(pChainResult->q, q2, flWeight, pChainResult->q);
|
||
}
|
||
break;
|
||
case IK_UNLATCH:
|
||
{
|
||
/*
|
||
pChainResult->flWeight = pChainResult->flWeight * (1 - pRule->flWeight) + pRule->flWeight;
|
||
|
||
pChainResult->pos = pChainResult->pos * (1.0 - pRule->flWeight ) + pChainResult->local.pos * pRule->flWeight;
|
||
QuaternionSlerp( pChainResult->q, pChainResult->local.q, pRule->flWeight, pChainResult->q );
|
||
*/
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < m_target.Count(); i++)
|
||
{
|
||
CIKTarget *pTarget = &m_target[i];
|
||
|
||
if (m_target[i].est.flWeight > 0.0)
|
||
{
|
||
matrix3x4_t worldFootpad;
|
||
matrix3x4_t local;
|
||
//mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( m_target[i].chain );
|
||
ikchainresult_t *pChainResult = &chainResult[pTarget->chain];
|
||
|
||
AngleMatrix(pTarget->offset.q, pTarget->offset.pos, local);
|
||
|
||
AngleMatrix(pTarget->est.q, pTarget->est.pos, worldFootpad);
|
||
|
||
ConcatTransforms(worldFootpad, local, worldTarget);
|
||
|
||
Vector p2;
|
||
Quaternion q2;
|
||
// target p and q
|
||
MatrixAngles(worldTarget, q2, p2);
|
||
// MatrixAngles( worldTarget, pChainResult->q, pChainResult->pos );
|
||
|
||
// blend in position and angles
|
||
pChainResult->flWeight = pTarget->est.flWeight;
|
||
pChainResult->pos = pChainResult->pos * (1.0 - pChainResult->flWeight) + p2 * pChainResult->flWeight;
|
||
QuaternionSlerp(pChainResult->q, q2, pChainResult->flWeight, pChainResult->q);
|
||
}
|
||
|
||
if (pTarget->latched.bNeedsLatch)
|
||
{
|
||
// keep track of latch position
|
||
pTarget->latched.bHasLatch = true;
|
||
pTarget->latched.q = pTarget->est.q;
|
||
pTarget->latched.pos = pTarget->est.pos;
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < m_pStudioHdr->numikchains(); i++)
|
||
{
|
||
ikchainresult_t *pChainResult = &chainResult[i];
|
||
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(i);
|
||
|
||
if (pChainResult->flWeight > 0.0)
|
||
{
|
||
Vector tmp;
|
||
MatrixPosition(boneToWorld[pchain->pLink(2)->bone], tmp);
|
||
// debugLine( pChainResult->pos, tmp, 255, 255, 255, true, 0.1 );
|
||
|
||
// do exact IK solution
|
||
// FIXME: once per link!
|
||
if (Studio_SolveIK(pchain, pChainResult->pos, boneToWorld))
|
||
{
|
||
Vector p3;
|
||
MatrixGetColumn(boneToWorld[pchain->pLink(2)->bone], 3, p3);
|
||
QuaternionMatrix(pChainResult->q, p3, boneToWorld[pchain->pLink(2)->bone]);
|
||
|
||
// rebuild chain
|
||
// FIXME: is this needed if everyone past this uses the boneToWorld array?
|
||
SolveBone(m_pStudioHdr, pchain->pLink(2)->bone, boneToWorld, pos, q);
|
||
SolveBone(m_pStudioHdr, pchain->pLink(1)->bone, boneToWorld, pos, q);
|
||
SolveBone(m_pStudioHdr, pchain->pLink(0)->bone, boneToWorld, pos, q);
|
||
}
|
||
else
|
||
{
|
||
// FIXME: need to invalidate the targets that forced this...
|
||
if (pChainResult->target != -1)
|
||
{
|
||
CIKTarget *pTarget = &m_target[pChainResult->target];
|
||
VectorScale(pTarget->latched.deltaPos, 0.8, pTarget->latched.deltaPos);
|
||
QuaternionScale(pTarget->latched.deltaQ, 0.8, pTarget->latched.deltaQ);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#if 0
|
||
Vector p1, p2, p3;
|
||
Quaternion q1, q2, q3;
|
||
|
||
// current p and q
|
||
MatrixAngles(boneToWorld[bone], q1, p1);
|
||
|
||
|
||
// target p and q
|
||
MatrixAngles(worldTarget, q2, p2);
|
||
|
||
// blend in position and angles
|
||
p3 = p1 * (1.0 - m_ikRule[i].flWeight) + p2 * m_ikRule[i].flWeight;
|
||
|
||
// do exact IK solution
|
||
// FIXME: once per link!
|
||
Studio_SolveIK(pchain, p3, boneToWorld);
|
||
|
||
// force angle (bad?)
|
||
QuaternionSlerp(q1, q2, m_ikRule[i].flWeight, q3);
|
||
MatrixGetColumn(boneToWorld[bone], 3, p3);
|
||
QuaternionMatrix(q3, p3, boneToWorld[bone]);
|
||
|
||
// rebuild chain
|
||
SolveBone(m_pStudioHdr, pchain->pLink(2)->bone, boneToWorld, pos, q);
|
||
SolveBone(m_pStudioHdr, pchain->pLink(1)->bone, boneToWorld, pos, q);
|
||
SolveBone(m_pStudioHdr, pchain->pLink(0)->bone, boneToWorld, pos, q);
|
||
#endif
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKContext::SolveAutoplayLocks(
|
||
Vector pos[],
|
||
Quaternion q[]
|
||
)
|
||
{
|
||
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
|
||
CBoneBitList boneComputed;
|
||
int i;
|
||
|
||
for (i = 0; i < m_ikLock.Count(); i++)
|
||
{
|
||
const mstudioiklock_t &lock = ((CStudioHdr *)m_pStudioHdr)->pIKAutoplayLock(i);
|
||
SolveLock(&lock, i, pos, q, boneToWorld, boneComputed);
|
||
}
|
||
g_MatrixPool.Free(boneToWorld);
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKContext::SolveSequenceLocks(
|
||
mstudioseqdesc_t &seqdesc,
|
||
Vector pos[],
|
||
Quaternion q[]
|
||
)
|
||
{
|
||
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
|
||
CBoneBitList boneComputed;
|
||
int i;
|
||
|
||
for (i = 0; i < m_ikLock.Count(); i++)
|
||
{
|
||
mstudioiklock_t *plock = seqdesc.pIKLock(i);
|
||
SolveLock(plock, i, pos, q, boneToWorld, boneComputed);
|
||
}
|
||
g_MatrixPool.Free(boneToWorld);
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void CIKContext::AddAllLocks(Vector pos[], Quaternion q[])
|
||
{
|
||
// skip all array access if no autoplay locks.
|
||
if (m_pStudioHdr->GetNumIKChains() == 0)
|
||
{
|
||
return;
|
||
}
|
||
|
||
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
|
||
CBoneBitList boneComputed;
|
||
|
||
int ikOffset = m_ikLock.AddMultipleToTail(m_pStudioHdr->GetNumIKChains());
|
||
memset(&m_ikLock[ikOffset], 0, sizeof(ikcontextikrule_t)*m_pStudioHdr->GetNumIKChains());
|
||
|
||
for (int i = 0; i < m_pStudioHdr->GetNumIKChains(); i++)
|
||
{
|
||
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(i);
|
||
int bone = pchain->pLink(2)->bone;
|
||
|
||
// don't bother with iklock if the bone isn't going to be calculated
|
||
if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask))
|
||
continue;
|
||
|
||
// eval current ik'd bone
|
||
BuildBoneChain(pos, q, bone, boneToWorld, boneComputed);
|
||
|
||
ikcontextikrule_t &ikrule = m_ikLock[i + ikOffset];
|
||
|
||
ikrule.chain = i;
|
||
ikrule.slot = i;
|
||
ikrule.type = IK_WORLD;
|
||
|
||
MatrixAngles(boneToWorld[bone], ikrule.q, ikrule.pos);
|
||
|
||
// save off current knee direction
|
||
if (pchain->pLink(0)->kneeDir.LengthSqr() > 0.0)
|
||
{
|
||
Vector tmp = pchain->pLink(0)->kneeDir;
|
||
VectorRotate(pchain->pLink(0)->kneeDir, boneToWorld[pchain->pLink(0)->bone], ikrule.kneeDir);
|
||
MatrixPosition(boneToWorld[pchain->pLink(1)->bone], ikrule.kneePos);
|
||
}
|
||
else
|
||
{
|
||
ikrule.kneeDir.Init();
|
||
}
|
||
}
|
||
g_MatrixPool.Free(boneToWorld);
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
|
||
void CIKContext::SolveAllLocks(
|
||
Vector pos[],
|
||
Quaternion q[]
|
||
)
|
||
{
|
||
matrix3x4_t *boneToWorld = g_MatrixPool.Alloc();
|
||
CBoneBitList boneComputed;
|
||
int i;
|
||
|
||
mstudioiklock_t lock;
|
||
|
||
for (i = 0; i < m_ikLock.Count(); i++)
|
||
{
|
||
lock.chain = i;
|
||
lock.flPosWeight = 1.0;
|
||
lock.flLocalQWeight = 0.0;
|
||
lock.flags = 0;
|
||
|
||
SolveLock(&lock, i, pos, q, boneToWorld, boneComputed);
|
||
}
|
||
g_MatrixPool.Free(boneToWorld);
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
|
||
void CIKContext::SolveLock(
|
||
const mstudioiklock_t *plock,
|
||
int i,
|
||
Vector pos[],
|
||
Quaternion q[],
|
||
matrix3x4_t boneToWorld[],
|
||
CBoneBitList &boneComputed
|
||
)
|
||
{
|
||
mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(plock->chain);
|
||
int bone = pchain->pLink(2)->bone;
|
||
|
||
// don't bother with iklock if the bone isn't going to be calculated
|
||
if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask))
|
||
return;
|
||
|
||
// eval current ik'd bone
|
||
BuildBoneChain(pos, q, bone, boneToWorld, boneComputed);
|
||
|
||
Vector p1, p2, p3;
|
||
Quaternion q2, q3;
|
||
|
||
// current p and q
|
||
MatrixPosition(boneToWorld[bone], p1);
|
||
|
||
// blend in position
|
||
p3 = p1 * (1.0 - plock->flPosWeight) + m_ikLock[i].pos * plock->flPosWeight;
|
||
|
||
// do exact IK solution
|
||
if (m_ikLock[i].kneeDir.LengthSqr() > 0)
|
||
{
|
||
Studio_SolveIK(pchain->pLink(0)->bone, pchain->pLink(1)->bone, pchain->pLink(2)->bone, p3, m_ikLock[i].kneePos, m_ikLock[i].kneeDir, boneToWorld);
|
||
}
|
||
else
|
||
{
|
||
Studio_SolveIK(pchain, p3, boneToWorld);
|
||
}
|
||
|
||
// slam orientation
|
||
MatrixPosition(boneToWorld[bone], p3);
|
||
QuaternionMatrix(m_ikLock[i].q, p3, boneToWorld[bone]);
|
||
|
||
// rebuild chain
|
||
q2 = q[bone];
|
||
SolveBone(m_pStudioHdr, pchain->pLink(2)->bone, boneToWorld, pos, q);
|
||
QuaternionSlerp(q[bone], q2, plock->flLocalQWeight, q[bone]);
|
||
|
||
SolveBone(m_pStudioHdr, pchain->pLink(1)->bone, boneToWorld, pos, q);
|
||
SolveBone(m_pStudioHdr, pchain->pLink(0)->bone, boneToWorld, pos, q);
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: run all animations that automatically play and are driven off of poseParameters
|
||
//-----------------------------------------------------------------------------
|
||
void CBoneSetup::CalcAutoplaySequences(
|
||
Vector pos[],
|
||
Quaternion q[],
|
||
float flRealTime,
|
||
CIKContext *pIKContext
|
||
)
|
||
{
|
||
// ASSERT_NO_REENTRY();
|
||
|
||
int i;
|
||
if (pIKContext)
|
||
{
|
||
pIKContext->AddAutoplayLocks(pos, q);
|
||
}
|
||
|
||
unsigned short *pList = NULL;
|
||
int count = m_pStudioHdr->GetAutoplayList(&pList);
|
||
for (i = 0; i < count; i++)
|
||
{
|
||
int sequenceIndex = pList[i];
|
||
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)m_pStudioHdr)->pSeqdesc(sequenceIndex);
|
||
if (seqdesc.flags & STUDIO_AUTOPLAY)
|
||
{
|
||
float cycle = 0;
|
||
float cps = Studio_CPS(m_pStudioHdr, seqdesc, sequenceIndex, m_flPoseParameter);
|
||
cycle = flRealTime * cps;
|
||
cycle = cycle - (int)cycle;
|
||
|
||
AccumulatePose(pos, q, sequenceIndex, cycle, 1.0, flRealTime, pIKContext);
|
||
}
|
||
}
|
||
|
||
if (pIKContext)
|
||
{
|
||
pIKContext->SolveAutoplayLocks(pos, q);
|
||
}
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
void Studio_BuildMatrices(
|
||
const CStudioHdr *pStudioHdr,
|
||
const QAngle& angles,
|
||
const Vector& origin,
|
||
const Vector pos[],
|
||
const Quaternion q[],
|
||
int iBone,
|
||
float flScale,
|
||
matrix3x4_t bonetoworld[MAXSTUDIOBONES],
|
||
int boneMask
|
||
)
|
||
{
|
||
int i, j;
|
||
|
||
int chain[MAXSTUDIOBONES] = {};
|
||
int chainlength = 0;
|
||
|
||
if (iBone < -1 || iBone >= pStudioHdr->numbones())
|
||
iBone = 0;
|
||
|
||
// build list of what bones to use
|
||
if (iBone == -1)
|
||
{
|
||
// all bones
|
||
chainlength = pStudioHdr->numbones();
|
||
for (i = 0; i < pStudioHdr->numbones(); i++)
|
||
{
|
||
chain[chainlength - i - 1] = i;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
// only the parent bones
|
||
i = iBone;
|
||
while (i != -1)
|
||
{
|
||
chain[chainlength++] = i;
|
||
i = pStudioHdr->boneParent(i);
|
||
}
|
||
}
|
||
|
||
matrix3x4_t bonematrix;
|
||
matrix3x4_t rotationmatrix; // model to world transformation
|
||
AngleMatrix(angles, origin, rotationmatrix);
|
||
|
||
// Account for a change in scale
|
||
if (flScale < 1.0f - FLT_EPSILON || flScale > 1.0f + FLT_EPSILON)
|
||
{
|
||
Vector vecOffset;
|
||
MatrixGetColumn(rotationmatrix, 3, vecOffset);
|
||
vecOffset -= origin;
|
||
vecOffset *= flScale;
|
||
vecOffset += origin;
|
||
MatrixSetColumn(vecOffset, 3, rotationmatrix);
|
||
|
||
// Scale it uniformly
|
||
VectorScale(rotationmatrix[0], flScale, rotationmatrix[0]);
|
||
VectorScale(rotationmatrix[1], flScale, rotationmatrix[1]);
|
||
VectorScale(rotationmatrix[2], flScale, rotationmatrix[2]);
|
||
}
|
||
|
||
for (j = chainlength - 1; j >= 0; j--)
|
||
{
|
||
i = chain[j];
|
||
if (pStudioHdr->boneFlags(i) & boneMask)
|
||
{
|
||
QuaternionMatrix(q[i], pos[i], bonematrix);
|
||
|
||
if (pStudioHdr->boneParent(i) == -1)
|
||
{
|
||
ConcatTransforms(rotationmatrix, bonematrix, bonetoworld[i]);
|
||
}
|
||
else
|
||
{
|
||
ConcatTransforms(bonetoworld[pStudioHdr->boneParent(i)], bonematrix, bonetoworld[i]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: look at single column vector of another bones local transformation
|
||
// and generate a procedural transformation based on how that column
|
||
// points down the 6 cardinal axis (all negative weights are clamped to 0).
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void DoAxisInterpBone(
|
||
mstudiobone_t *pbones,
|
||
int ibone,
|
||
CBoneAccessor &bonetoworld
|
||
)
|
||
{
|
||
matrix3x4_t bonematrix;
|
||
Vector control;
|
||
|
||
mstudioaxisinterpbone_t *pProc = (mstudioaxisinterpbone_t *)pbones[ibone].pProcedure();
|
||
const matrix3x4_t &controlBone = bonetoworld.GetBone(pProc->control);
|
||
if (pProc && pbones[pProc->control].parent != -1)
|
||
{
|
||
Vector tmp;
|
||
// pull out the control column
|
||
tmp.x = controlBone[0][pProc->axis];
|
||
tmp.y = controlBone[1][pProc->axis];
|
||
tmp.z = controlBone[2][pProc->axis];
|
||
|
||
// invert it back into parent's space.
|
||
VectorIRotate(tmp, bonetoworld.GetBone(pbones[pProc->control].parent), control);
|
||
#if 0
|
||
matrix3x4_t tmpmatrix;
|
||
matrix3x4_t controlmatrix;
|
||
MatrixInvert(bonetoworld.GetBone(pbones[pProc->control].parent), tmpmatrix);
|
||
ConcatTransforms(tmpmatrix, bonetoworld.GetBone(pProc->control), controlmatrix);
|
||
|
||
// pull out the control column
|
||
control.x = controlmatrix[0][pProc->axis];
|
||
control.y = controlmatrix[1][pProc->axis];
|
||
control.z = controlmatrix[2][pProc->axis];
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
// pull out the control column
|
||
control.x = controlBone[0][pProc->axis];
|
||
control.y = controlBone[1][pProc->axis];
|
||
control.z = controlBone[2][pProc->axis];
|
||
}
|
||
|
||
Quaternion *q1, *q2, *q3;
|
||
Vector *p1, *p2, *p3;
|
||
|
||
// find axial control inputs
|
||
float a1 = control.x;
|
||
float a2 = control.y;
|
||
float a3 = control.z;
|
||
if (a1 >= 0)
|
||
{
|
||
q1 = &pProc->quat[0];
|
||
p1 = &pProc->pos[0];
|
||
}
|
||
else
|
||
{
|
||
a1 = -a1;
|
||
q1 = &pProc->quat[1];
|
||
p1 = &pProc->pos[1];
|
||
}
|
||
|
||
if (a2 >= 0)
|
||
{
|
||
q2 = &pProc->quat[2];
|
||
p2 = &pProc->pos[2];
|
||
}
|
||
else
|
||
{
|
||
a2 = -a2;
|
||
q2 = &pProc->quat[3];
|
||
p2 = &pProc->pos[3];
|
||
}
|
||
|
||
if (a3 >= 0)
|
||
{
|
||
q3 = &pProc->quat[4];
|
||
p3 = &pProc->pos[4];
|
||
}
|
||
else
|
||
{
|
||
a3 = -a3;
|
||
q3 = &pProc->quat[5];
|
||
p3 = &pProc->pos[5];
|
||
}
|
||
|
||
// do a three-way blend
|
||
Vector p;
|
||
Quaternion v, tmp;
|
||
if (a1 + a2 > 0)
|
||
{
|
||
float t = 1.0 / (a1 + a2 + a3);
|
||
// FIXME: do a proper 3-way Quat blend!
|
||
QuaternionSlerp(*q2, *q1, a1 / (a1 + a2), tmp);
|
||
QuaternionSlerp(tmp, *q3, a3 * t, v);
|
||
VectorScale(*p1, a1 * t, p);
|
||
VectorMA(p, a2 * t, *p2, p);
|
||
VectorMA(p, a3 * t, *p3, p);
|
||
}
|
||
else
|
||
{
|
||
QuaternionSlerp(*q3, *q3, 0, v); // ??? no quat copy?
|
||
p = *p3;
|
||
}
|
||
|
||
QuaternionMatrix(v, p, bonematrix);
|
||
|
||
ConcatTransforms(bonetoworld.GetBone(pbones[ibone].parent), bonematrix, bonetoworld.GetBoneForWrite(ibone));
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Generate a procedural transformation based on how that another bones
|
||
// local transformation matches a set of target orientations.
|
||
//-----------------------------------------------------------------------------
|
||
void DoQuatInterpBone(
|
||
mstudiobone_t *pbones,
|
||
int ibone,
|
||
CBoneAccessor &bonetoworld
|
||
)
|
||
{
|
||
matrix3x4_t bonematrix;
|
||
Vector control;
|
||
|
||
mstudioquatinterpbone_t *pProc = (mstudioquatinterpbone_t *)pbones[ibone].pProcedure();
|
||
if (pProc && pbones[pProc->control].parent != -1)
|
||
{
|
||
Quaternion src;
|
||
float weight[32];
|
||
float scale = 0.0;
|
||
Quaternion quat;
|
||
Vector pos;
|
||
|
||
matrix3x4_t tmpmatrix;
|
||
matrix3x4_t controlmatrix;
|
||
MatrixInvert(bonetoworld.GetBone(pbones[pProc->control].parent), tmpmatrix);
|
||
ConcatTransforms(tmpmatrix, bonetoworld.GetBone(pProc->control), controlmatrix);
|
||
|
||
MatrixAngles(controlmatrix, src, pos); // FIXME: make a version without pos
|
||
|
||
int i;
|
||
for (i = 0; i < pProc->numtriggers; i++)
|
||
{
|
||
float dot = fabs(QuaternionDotProduct(pProc->pTrigger(i)->trigger, src));
|
||
// FIXME: a fast acos should be acceptable
|
||
dot = clamp(dot, -1.f, 1.f);
|
||
weight[i] = 1 - (2 * acos(dot) * pProc->pTrigger(i)->inv_tolerance);
|
||
weight[i] = max(0, weight[i]);
|
||
scale += weight[i];
|
||
}
|
||
|
||
if (scale <= 0.001) // EPSILON?
|
||
{
|
||
AngleMatrix(pProc->pTrigger(0)->quat, pProc->pTrigger(0)->pos, bonematrix);
|
||
ConcatTransforms(bonetoworld.GetBone(pbones[ibone].parent), bonematrix, bonetoworld.GetBoneForWrite(ibone));
|
||
return;
|
||
}
|
||
|
||
scale = 1.0 / scale;
|
||
|
||
quat.Init(0, 0, 0, 0);
|
||
pos.Init();
|
||
|
||
for (i = 0; i < pProc->numtriggers; i++)
|
||
{
|
||
if (weight[i])
|
||
{
|
||
float s = weight[i] * scale;
|
||
mstudioquatinterpinfo_t *pTrigger = pProc->pTrigger(i);
|
||
|
||
QuaternionAlign(pTrigger->quat, quat, quat);
|
||
|
||
quat.x = quat.x + s * pTrigger->quat.x;
|
||
quat.y = quat.y + s * pTrigger->quat.y;
|
||
quat.z = quat.z + s * pTrigger->quat.z;
|
||
quat.w = quat.w + s * pTrigger->quat.w;
|
||
pos.x = pos.x + s * pTrigger->pos.x;
|
||
pos.y = pos.y + s * pTrigger->pos.y;
|
||
pos.z = pos.z + s * pTrigger->pos.z;
|
||
}
|
||
}
|
||
Assert(QuaternionNormalize(quat) != 0);
|
||
QuaternionMatrix(quat, pos, bonematrix);
|
||
}
|
||
|
||
ConcatTransforms(bonetoworld.GetBone(pbones[ibone].parent), bonematrix, bonetoworld.GetBoneForWrite(ibone));
|
||
}
|
||
|
||
/*
|
||
* This is for DoAimAtBone below, was just for testing, not needed in general
|
||
* but to turn it back on, uncomment this and the section in DoAimAtBone() below
|
||
*
|
||
|
||
static ConVar aim_constraint( "aim_constraint", "1", FCVAR_REPLICATED, "Toggle <aimconstraint> Helper Bones" );
|
||
|
||
*/
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Generate a procedural transformation so that one bone points at
|
||
// another point on the model
|
||
//-----------------------------------------------------------------------------
|
||
void DoAimAtBone(
|
||
mstudiobone_t *pBones,
|
||
int iBone,
|
||
CBoneAccessor &bonetoworld,
|
||
const CStudioHdr *pStudioHdr
|
||
)
|
||
{
|
||
mstudioaimatbone_t *pProc = (mstudioaimatbone_t *)pBones[iBone].pProcedure();
|
||
|
||
if (!pProc)
|
||
{
|
||
return;
|
||
}
|
||
|
||
/*
|
||
* Uncomment this if the ConVar above is uncommented
|
||
*
|
||
|
||
if ( !aim_constraint.GetBool() )
|
||
{
|
||
// If the aim constraint is turned off then just copy the parent transform
|
||
// plus the offset value
|
||
|
||
matrix3x4_t boneToWorldSpace;
|
||
MatrixCopy ( bonetoworld.GetBone( pProc->parent ), boneToWorldSpace );
|
||
Vector boneWorldPosition;
|
||
VectorTransform( pProc->basepos, boneToWorldSpace, boneWorldPosition );
|
||
MatrixSetColumn( boneWorldPosition, 3, boneToWorldSpace );
|
||
MatrixCopy( boneToWorldSpace, bonetoworld.GetBoneForWrite( iBone ) );
|
||
|
||
return;
|
||
}
|
||
|
||
*/
|
||
|
||
// The world matrix of the bone to change
|
||
matrix3x4_t boneMatrix;
|
||
|
||
// Guaranteed to be unit length
|
||
const Vector &userAimVector(pProc->aimvector);
|
||
|
||
// Guaranteed to be unit length
|
||
const Vector &userUpVector(pProc->upvector);
|
||
|
||
// Get to get position of bone but also for up reference
|
||
matrix3x4_t parentSpace;
|
||
MatrixCopy(bonetoworld.GetBone(pProc->parent), parentSpace);
|
||
|
||
// World space position of the bone to aim
|
||
Vector aimWorldPosition;
|
||
VectorTransform(pProc->basepos, parentSpace, aimWorldPosition);
|
||
|
||
// The worldspace matrix of the bone to aim at
|
||
matrix3x4_t aimAtSpace;
|
||
if (pStudioHdr)
|
||
{
|
||
// This means it's AIMATATTACH
|
||
const mstudioattachment_t &attachment(((CStudioHdr *)pStudioHdr)->pAttachment(pProc->aim));
|
||
ConcatTransforms(
|
||
bonetoworld.GetBone(attachment.localbone),
|
||
attachment.local,
|
||
aimAtSpace);
|
||
}
|
||
else
|
||
{
|
||
MatrixCopy(bonetoworld.GetBone(pProc->aim), aimAtSpace);
|
||
}
|
||
|
||
Vector aimAtWorldPosition;
|
||
MatrixGetColumn(aimAtSpace, 3, aimAtWorldPosition);
|
||
|
||
// make sure the redundant parent info is correct
|
||
Assert(pProc->parent == pBones[iBone].parent);
|
||
// make sure the redundant position info is correct
|
||
Assert(pProc->basepos.DistToSqr(pBones[iBone].pos) < 0.1);
|
||
|
||
// The aim and up data is relative to this bone, not the parent bone
|
||
matrix3x4_t bonematrix, boneLocalToWorld;
|
||
AngleMatrix(pBones[iBone].quat, pProc->basepos, bonematrix);
|
||
ConcatTransforms(bonetoworld.GetBone(pProc->parent), bonematrix, boneLocalToWorld);
|
||
|
||
Vector aimVector;
|
||
VectorSubtract(aimAtWorldPosition, aimWorldPosition, aimVector);
|
||
VectorNormalizeFast(aimVector);
|
||
|
||
Vector axis;
|
||
CrossProduct(userAimVector, aimVector, axis);
|
||
VectorNormalizeFast(axis);
|
||
Assert(1.0f - fabs(DotProduct(userAimVector, aimVector)) > FLT_EPSILON);
|
||
float angle(acosf(DotProduct(userAimVector, aimVector)));
|
||
Quaternion aimRotation;
|
||
AxisAngleQuaternion(axis, RAD2DEG(angle), aimRotation);
|
||
|
||
if ((1.0f - fabs(DotProduct(userUpVector, userAimVector))) > FLT_EPSILON)
|
||
{
|
||
matrix3x4_t aimRotationMatrix;
|
||
QuaternionMatrix(aimRotation, aimRotationMatrix);
|
||
|
||
Vector tmpV;
|
||
|
||
Vector tmp_pUp;
|
||
VectorRotate(userUpVector, aimRotationMatrix, tmp_pUp);
|
||
VectorScale(aimVector, DotProduct(aimVector, tmp_pUp), tmpV);
|
||
Vector pUp;
|
||
VectorSubtract(tmp_pUp, tmpV, pUp);
|
||
VectorNormalizeFast(pUp);
|
||
|
||
Vector tmp_pParentUp;
|
||
VectorRotate(userUpVector, boneLocalToWorld, tmp_pParentUp);
|
||
VectorScale(aimVector, DotProduct(aimVector, tmp_pParentUp), tmpV);
|
||
Vector pParentUp;
|
||
VectorSubtract(tmp_pParentUp, tmpV, pParentUp);
|
||
VectorNormalizeFast(pParentUp);
|
||
|
||
Quaternion upRotation;
|
||
//Assert( 1.0f - fabs( DotProduct( pUp, pParentUp ) ) > FLT_EPSILON );
|
||
if (1.0f - fabs(DotProduct(pUp, pParentUp)) > FLT_EPSILON)
|
||
{
|
||
angle = acos(DotProduct(pUp, pParentUp));
|
||
CrossProduct(pUp, pParentUp, axis);
|
||
}
|
||
else
|
||
{
|
||
angle = 0;
|
||
axis = pUp;
|
||
}
|
||
|
||
VectorNormalizeFast(axis);
|
||
AxisAngleQuaternion(axis, RAD2DEG(angle), upRotation);
|
||
|
||
Quaternion boneRotation;
|
||
QuaternionMult(upRotation, aimRotation, boneRotation);
|
||
QuaternionMatrix(boneRotation, aimWorldPosition, boneMatrix);
|
||
}
|
||
else
|
||
{
|
||
QuaternionMatrix(aimRotation, aimWorldPosition, boneMatrix);
|
||
}
|
||
|
||
MatrixCopy(boneMatrix, bonetoworld.GetBoneForWrite(iBone));
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
|
||
bool CalcProceduralBone(
|
||
const CStudioHdr *pStudioHdr,
|
||
int iBone,
|
||
CBoneAccessor &bonetoworld
|
||
)
|
||
{
|
||
mstudiobone_t *pbones = pStudioHdr->pBone(0);
|
||
|
||
if (pStudioHdr->boneFlags(iBone) & BONE_ALWAYS_PROCEDURAL)
|
||
{
|
||
switch (pbones[iBone].proctype)
|
||
{
|
||
case STUDIO_PROC_AXISINTERP:
|
||
DoAxisInterpBone(pbones, iBone, bonetoworld);
|
||
return true;
|
||
|
||
case STUDIO_PROC_QUATINTERP:
|
||
DoQuatInterpBone(pbones, iBone, bonetoworld);
|
||
return true;
|
||
|
||
case STUDIO_PROC_AIMATBONE:
|
||
DoAimAtBone(pbones, iBone, bonetoworld, NULL);
|
||
return true;
|
||
|
||
case STUDIO_PROC_AIMATATTACH:
|
||
DoAimAtBone(pbones, iBone, bonetoworld, pStudioHdr);
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Lookup a bone controller
|
||
//-----------------------------------------------------------------------------
|
||
|
||
|
||
|
||
static mstudiobonecontroller_t* FindController(const CStudioHdr *pStudioHdr, int iController)
|
||
{
|
||
// find first controller that matches the index
|
||
for (int i = 0; i < pStudioHdr->numbonecontrollers(); i++)
|
||
{
|
||
if (pStudioHdr->pBonecontroller(i)->inputfield == iController)
|
||
return pStudioHdr->pBonecontroller(i);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: converts a ranged bone controller value into a 0..1 encoded value
|
||
// Output: ctlValue contains 0..1 encoding.
|
||
// returns clamped ranged value
|
||
//-----------------------------------------------------------------------------
|
||
|
||
float Studio_SetController(const CStudioHdr *pStudioHdr, int iController, float flValue, float &ctlValue)
|
||
{
|
||
if (!pStudioHdr)
|
||
return flValue;
|
||
|
||
mstudiobonecontroller_t *pbonecontroller = FindController(pStudioHdr, iController);
|
||
if (!pbonecontroller)
|
||
{
|
||
ctlValue = 0;
|
||
return flValue;
|
||
}
|
||
|
||
// wrap 0..360 if it's a rotational controller
|
||
if (pbonecontroller->type & (STUDIO_XR | STUDIO_YR | STUDIO_ZR))
|
||
{
|
||
// ugly hack, invert value if end < start
|
||
if (pbonecontroller->end < pbonecontroller->start)
|
||
flValue = -flValue;
|
||
|
||
// does the controller not wrap?
|
||
if (pbonecontroller->start + 359.0 >= pbonecontroller->end)
|
||
{
|
||
if (flValue >((pbonecontroller->start + pbonecontroller->end) / 2.0) + 180)
|
||
flValue = flValue - 360;
|
||
if (flValue < ((pbonecontroller->start + pbonecontroller->end) / 2.0) - 180)
|
||
flValue = flValue + 360;
|
||
}
|
||
else
|
||
{
|
||
if (flValue > 360)
|
||
flValue = flValue - (int)(flValue / 360.0) * 360.0;
|
||
else if (flValue < 0)
|
||
flValue = flValue + (int)((flValue / -360.0) + 1) * 360.0;
|
||
}
|
||
}
|
||
|
||
ctlValue = (flValue - pbonecontroller->start) / (pbonecontroller->end - pbonecontroller->start);
|
||
if (ctlValue < 0) ctlValue = 0;
|
||
if (ctlValue > 1) ctlValue = 1;
|
||
|
||
float flReturnVal = ((1.0 - ctlValue)*pbonecontroller->start + ctlValue *pbonecontroller->end);
|
||
|
||
// ugly hack, invert value if a rotational controller and end < start
|
||
if (pbonecontroller->type & (STUDIO_XR | STUDIO_YR | STUDIO_ZR) &&
|
||
pbonecontroller->end < pbonecontroller->start)
|
||
{
|
||
flReturnVal *= -1;
|
||
}
|
||
|
||
return flReturnVal;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: converts a 0..1 encoded bone controller value into a ranged value
|
||
// Output: returns ranged value
|
||
//-----------------------------------------------------------------------------
|
||
|
||
float Studio_GetController(const CStudioHdr *pStudioHdr, int iController, float ctlValue)
|
||
{
|
||
if (!pStudioHdr)
|
||
return 0.0;
|
||
|
||
mstudiobonecontroller_t *pbonecontroller = FindController(pStudioHdr, iController);
|
||
if (!pbonecontroller)
|
||
return 0;
|
||
|
||
return ctlValue * (pbonecontroller->end - pbonecontroller->start) + pbonecontroller->start;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Calculates default values for the pose parameters
|
||
// Output: fills in an array
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void Studio_CalcDefaultPoseParameters(const CStudioHdr *pStudioHdr, float flPoseParameter[], int nCount)
|
||
{
|
||
int nPoseCount = pStudioHdr->GetNumPoseParameters();
|
||
int nNumParams = MIN(nCount, MAXSTUDIOPOSEPARAM);
|
||
|
||
for (int i = 0; i < nNumParams; ++i)
|
||
{
|
||
// Default to middle of the pose parameter range
|
||
flPoseParameter[i] = 0.5f;
|
||
if (i < nPoseCount)
|
||
{
|
||
const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)pStudioHdr)->pPoseParameter(i);
|
||
|
||
// Want to try for a zero state. If one doesn't exist set it to .5 by default.
|
||
if (Pose.start < 0.0f && Pose.end > 0.0f)
|
||
{
|
||
float flPoseDelta = Pose.end - Pose.start;
|
||
flPoseParameter[i] = -Pose.start / flPoseDelta;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: converts a ranged pose parameter value into a 0..1 encoded value
|
||
// Output: ctlValue contains 0..1 encoding.
|
||
// returns clamped ranged value
|
||
//-----------------------------------------------------------------------------
|
||
|
||
float Studio_SetPoseParameter(const CStudioHdr *pStudioHdr, int iParameter, float flValue, float &ctlValue)
|
||
{
|
||
if (iParameter < 0 || iParameter >= pStudioHdr->GetNumPoseParameters())
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
const mstudioposeparamdesc_t &PoseParam = ((CStudioHdr *)pStudioHdr)->pPoseParameter(iParameter);
|
||
|
||
Assert(IsFinite(flValue));
|
||
|
||
if (PoseParam.loop)
|
||
{
|
||
float wrap = (PoseParam.start + PoseParam.end) / 2.0 + PoseParam.loop / 2.0;
|
||
float shift = PoseParam.loop - wrap;
|
||
|
||
flValue = flValue - PoseParam.loop * floor((flValue + shift) / PoseParam.loop);
|
||
}
|
||
|
||
ctlValue = (flValue - PoseParam.start) / (PoseParam.end - PoseParam.start);
|
||
|
||
if (ctlValue < 0) ctlValue = 0;
|
||
if (ctlValue > 1) ctlValue = 1;
|
||
|
||
Assert(IsFinite(ctlValue));
|
||
|
||
return ctlValue * (PoseParam.end - PoseParam.start) + PoseParam.start;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: converts a 0..1 encoded pose parameter value into a ranged value
|
||
// Output: returns ranged value
|
||
//-----------------------------------------------------------------------------
|
||
|
||
float Studio_GetPoseParameter(const CStudioHdr *pStudioHdr, int iParameter, float ctlValue)
|
||
{
|
||
if (iParameter < 0 || iParameter >= pStudioHdr->GetNumPoseParameters())
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
const mstudioposeparamdesc_t &PoseParam = ((CStudioHdr *)pStudioHdr)->pPoseParameter(iParameter);
|
||
|
||
return ctlValue * (PoseParam.end - PoseParam.start) + PoseParam.start;
|
||
}
|
||
|
||
|
||
#pragma warning (disable : 4701)
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
static int ClipRayToHitbox(const Ray_t &ray, mstudiobbox_t *pbox, matrix3x4_t& matrix, trace_t &tr)
|
||
{
|
||
const float flProjEpsilon = 0.01f;
|
||
// scale by current t so hits shorten the ray and increase the likelihood of early outs
|
||
Vector delta2;
|
||
VectorScale(ray.m_Delta, (0.5f * tr.fraction), delta2);
|
||
|
||
// OPTIMIZE: Store this in the box instead of computing it here
|
||
// compute center in local space
|
||
Vector boxextents;
|
||
boxextents.x = (pbox->bbmin.x + pbox->bbmax.x) * 0.5;
|
||
boxextents.y = (pbox->bbmin.y + pbox->bbmax.y) * 0.5;
|
||
boxextents.z = (pbox->bbmin.z + pbox->bbmax.z) * 0.5;
|
||
Vector boxCenter;
|
||
// transform to world space
|
||
VectorTransform(boxextents, matrix, boxCenter);
|
||
// calc extents from local center
|
||
boxextents.x = pbox->bbmax.x - boxextents.x;
|
||
boxextents.y = pbox->bbmax.y - boxextents.y;
|
||
boxextents.z = pbox->bbmax.z - boxextents.z;
|
||
// OPTIMIZE: This is optimized for world space. If the transform is fast enough, it may make more
|
||
// sense to just xform and call UTIL_ClipToBox() instead. MEASURE THIS.
|
||
|
||
// save the extents of the ray along
|
||
Vector extent, uextent;
|
||
Vector segmentCenter;
|
||
segmentCenter.x = ray.m_Start.x + delta2.x - boxCenter.x;
|
||
segmentCenter.y = ray.m_Start.y + delta2.y - boxCenter.y;
|
||
segmentCenter.z = ray.m_Start.z + delta2.z - boxCenter.z;
|
||
|
||
extent.Init();
|
||
|
||
// check box axes for separation
|
||
for (int j = 0; j < 3; j++)
|
||
{
|
||
extent[j] = delta2.x * matrix[0][j] + delta2.y * matrix[1][j] + delta2.z * matrix[2][j];
|
||
uextent[j] = fabsf(extent[j]);
|
||
float coord = segmentCenter.x * matrix[0][j] + segmentCenter.y * matrix[1][j] + segmentCenter.z * matrix[2][j];
|
||
coord = fabsf(coord);
|
||
|
||
if (coord >(boxextents[j] + uextent[j]))
|
||
return -1;
|
||
}
|
||
|
||
// now check cross axes for separation
|
||
float tmp, tmpfix, cextent;
|
||
Vector cross;
|
||
CrossProduct(delta2, segmentCenter, cross);
|
||
cextent = cross.x * matrix[0][0] + cross.y * matrix[1][0] + cross.z * matrix[2][0];
|
||
cextent = fabsf(cextent);
|
||
tmp = boxextents[1] * uextent[2] + boxextents[2] * uextent[1];
|
||
tmpfix = MAX(tmp, flProjEpsilon);
|
||
if (cextent > tmpfix)
|
||
return -1;
|
||
|
||
// if ( cextent > tmp && cextent <= tmpfix )
|
||
// DevWarning( "ClipRayToHitbox trace precision error case\n" );
|
||
|
||
cextent = cross.x * matrix[0][1] + cross.y * matrix[1][1] + cross.z * matrix[2][1];
|
||
cextent = fabsf(cextent);
|
||
tmp = boxextents[0] * uextent[2] + boxextents[2] * uextent[0];
|
||
tmpfix = MAX(tmp, flProjEpsilon);
|
||
if (cextent > tmpfix)
|
||
return -1;
|
||
|
||
// if ( cextent > tmp && cextent <= tmpfix )
|
||
// DevWarning( "ClipRayToHitbox trace precision error case\n" );
|
||
|
||
cextent = cross.x * matrix[0][2] + cross.y * matrix[1][2] + cross.z * matrix[2][2];
|
||
cextent = fabsf(cextent);
|
||
tmp = boxextents[0] * uextent[1] + boxextents[1] * uextent[0];
|
||
tmpfix = MAX(tmp, flProjEpsilon);
|
||
if (cextent > tmpfix)
|
||
return -1;
|
||
|
||
// if ( cextent > tmp && cextent <= tmpfix )
|
||
// DevWarning( "ClipRayToHitbox trace precision error case\n" );
|
||
|
||
// !!! We hit this box !!! compute intersection point and return
|
||
Vector start;
|
||
|
||
// Compute ray start in bone space
|
||
VectorITransform(ray.m_Start, matrix, start);
|
||
// extent is delta2 in bone space, recompute delta in bone space
|
||
VectorScale(extent, 2, extent);
|
||
|
||
// delta was prescaled by the current t, so no need to see if this intersection
|
||
// is closer
|
||
trace_t boxTrace;
|
||
if (!IntersectRayWithBox(start, extent, pbox->bbmin, pbox->bbmax, 0.0f, &boxTrace))
|
||
return -1;
|
||
|
||
Assert(IsFinite(boxTrace.fraction));
|
||
tr.fraction *= boxTrace.fraction;
|
||
tr.startsolid = boxTrace.startsolid;
|
||
int hitside = boxTrace.plane.type;
|
||
if (boxTrace.plane.normal[hitside] >= 0)
|
||
{
|
||
hitside += 3;
|
||
}
|
||
return hitside;
|
||
}
|
||
|
||
#pragma warning (default : 4701)
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
bool SweepBoxToStudio(IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set,
|
||
matrix3x4_t **hitboxbones, int fContentsMask, trace_t &tr)
|
||
{
|
||
tr.fraction = 1.0;
|
||
tr.startsolid = false;
|
||
|
||
// OPTIMIZE: Partition these?
|
||
Ray_t clippedRay = ray;
|
||
int hitbox = -1;
|
||
for (int i = 0; i < set->numhitboxes; i++)
|
||
{
|
||
mstudiobbox_t *pbox = set->pHitbox(i);
|
||
|
||
// Filter based on contents mask
|
||
int fBoneContents = pStudioHdr->pBone(pbox->bone)->contents;
|
||
if ((fBoneContents & fContentsMask) == 0)
|
||
continue;
|
||
|
||
//FIXME: Won't work with scaling!
|
||
trace_t obbTrace;
|
||
if (IntersectRayWithOBB(clippedRay, *hitboxbones[pbox->bone], pbox->bbmin, pbox->bbmax, 0.0f, &obbTrace))
|
||
{
|
||
tr.startpos = obbTrace.startpos;
|
||
tr.endpos = obbTrace.endpos;
|
||
tr.plane = obbTrace.plane;
|
||
tr.startsolid = obbTrace.startsolid;
|
||
tr.allsolid = obbTrace.allsolid;
|
||
|
||
// This logic here is to shorten the ray each time to get more early outs
|
||
tr.fraction *= obbTrace.fraction;
|
||
clippedRay.m_Delta *= obbTrace.fraction;
|
||
hitbox = i;
|
||
if (tr.startsolid)
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (hitbox >= 0)
|
||
{
|
||
tr.hitgroup = set->pHitbox(hitbox)->group;
|
||
tr.hitbox = hitbox;
|
||
const mstudiobone_t *pBone = pStudioHdr->pBone(set->pHitbox(hitbox)->bone);
|
||
tr.contents = pBone->contents | CONTENTS_HITBOX;
|
||
tr.physicsbone = pBone->physicsbone;
|
||
tr.surface.name = "**studio**";
|
||
tr.surface.flags = SURF_HITBOX;
|
||
tr.surface.surfaceProps = pProps->GetSurfaceIndex(pBone->pszSurfaceProp());
|
||
|
||
Assert(tr.physicsbone >= 0);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose:
|
||
//-----------------------------------------------------------------------------
|
||
bool TraceToStudio(IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set,
|
||
matrix3x4_t **hitboxbones, int fContentsMask, const Vector &vecOrigin, float flScale, trace_t &tr)
|
||
{
|
||
if (!ray.m_IsRay)
|
||
{
|
||
return SweepBoxToStudio(pProps, ray, pStudioHdr, set, hitboxbones, fContentsMask, tr);
|
||
}
|
||
|
||
tr.fraction = 1.0;
|
||
tr.startsolid = false;
|
||
|
||
// no hit yet
|
||
int hitbox = -1;
|
||
int hitside = -1;
|
||
|
||
// OPTIMIZE: Partition these?
|
||
for (int i = 0; i < set->numhitboxes; i++)
|
||
{
|
||
mstudiobbox_t *pbox = set->pHitbox(i);
|
||
|
||
// Filter based on contents mask
|
||
int fBoneContents = pStudioHdr->pBone(pbox->bone)->contents;
|
||
if ((fBoneContents & fContentsMask) == 0)
|
||
continue;
|
||
|
||
// columns are axes of the bones in world space, translation is in world space
|
||
matrix3x4_t& matrix = *hitboxbones[pbox->bone];
|
||
|
||
// Because we're sending in a matrix with scale data, and because the matrix inversion in the hitbox
|
||
// code does not handle that case, we pre-scale the bones and ray down here and do our collision checks
|
||
// in unscaled space. We can then rescale the results afterwards.
|
||
|
||
int side = -1;
|
||
if (flScale < 1.0f - FLT_EPSILON || flScale > 1.0f + FLT_EPSILON)
|
||
{
|
||
matrix3x4_t matScaled;
|
||
MatrixCopy(matrix, matScaled);
|
||
|
||
float invScale = 1.0f / flScale;
|
||
|
||
Vector vecBoneOrigin;
|
||
MatrixGetColumn(matScaled, 3, vecBoneOrigin);
|
||
|
||
// Pre-scale the origin down
|
||
Vector vecNewOrigin = vecBoneOrigin - vecOrigin;
|
||
vecNewOrigin *= invScale;
|
||
vecNewOrigin += vecOrigin;
|
||
MatrixSetColumn(vecNewOrigin, 3, matScaled);
|
||
|
||
// Scale it uniformly
|
||
VectorScale(matScaled[0], invScale, matScaled[0]);
|
||
VectorScale(matScaled[1], invScale, matScaled[1]);
|
||
VectorScale(matScaled[2], invScale, matScaled[2]);
|
||
|
||
// Pre-scale our ray as well
|
||
Vector vecRayStart = ray.m_Start - vecOrigin;
|
||
vecRayStart *= invScale;
|
||
vecRayStart += vecOrigin;
|
||
|
||
Vector vecRayDelta = ray.m_Delta * invScale;
|
||
|
||
Ray_t newRay;
|
||
newRay.Init(vecRayStart, vecRayStart + vecRayDelta);
|
||
|
||
side = ClipRayToHitbox(newRay, pbox, matScaled, tr);
|
||
}
|
||
else
|
||
{
|
||
side = ClipRayToHitbox(ray, pbox, matrix, tr);
|
||
}
|
||
|
||
if (side >= 0)
|
||
{
|
||
hitbox = i;
|
||
hitside = side;
|
||
}
|
||
}
|
||
|
||
if (hitbox >= 0)
|
||
{
|
||
mstudiobbox_t *pbox = set->pHitbox(hitbox);
|
||
VectorMA(ray.m_Start, tr.fraction, ray.m_Delta, tr.endpos);
|
||
tr.hitgroup = set->pHitbox(hitbox)->group;
|
||
tr.hitbox = hitbox;
|
||
const mstudiobone_t *pBone = pStudioHdr->pBone(pbox->bone);
|
||
tr.contents = pBone->contents | CONTENTS_HITBOX;
|
||
tr.physicsbone = pBone->physicsbone;
|
||
tr.surface.name = "**studio**";
|
||
tr.surface.flags = SURF_HITBOX;
|
||
tr.surface.surfaceProps = pProps->GetSurfaceIndex(pBone->pszSurfaceProp());
|
||
|
||
Assert(tr.physicsbone >= 0);
|
||
matrix3x4_t& matrix = *hitboxbones[pbox->bone];
|
||
if (hitside >= 3)
|
||
{
|
||
hitside -= 3;
|
||
tr.plane.normal[0] = matrix[0][hitside];
|
||
tr.plane.normal[1] = matrix[1][hitside];
|
||
tr.plane.normal[2] = matrix[2][hitside];
|
||
//tr.plane.dist = DotProduct( tr.plane.normal, Vector(matrix[0][3], matrix[1][3], matrix[2][3] ) ) + pbox->bbmax[hitside];
|
||
}
|
||
else
|
||
{
|
||
tr.plane.normal[0] = -matrix[0][hitside];
|
||
tr.plane.normal[1] = -matrix[1][hitside];
|
||
tr.plane.normal[2] = -matrix[2][hitside];
|
||
//tr.plane.dist = DotProduct( tr.plane.normal, Vector(matrix[0][3], matrix[1][3], matrix[2][3] ) ) - pbox->bbmin[hitside];
|
||
}
|
||
// simpler plane constant equation
|
||
tr.plane.dist = DotProduct(tr.endpos, tr.plane.normal);
|
||
tr.plane.type = 3;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: returns array of animations and weightings for a sequence based on current pose parameters
|
||
//-----------------------------------------------------------------------------
|
||
|
||
void Studio_SeqAnims(const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[], mstudioanimdesc_t *panim[4], float *weight)
|
||
{
|
||
#if _DEBUG
|
||
VPROF_INCREMENT_COUNTER("SEQ_ANIMS", 1);
|
||
#endif
|
||
if (!pStudioHdr || iSequence >= pStudioHdr->GetNumSeq())
|
||
{
|
||
weight[0] = weight[1] = weight[2] = weight[3] = 0.0;
|
||
return;
|
||
}
|
||
|
||
int i0 = 0, i1 = 0;
|
||
float s0 = 0, s1 = 0;
|
||
|
||
Studio_LocalPoseParameter(pStudioHdr, poseParameter, seqdesc, iSequence, 0, s0, i0);
|
||
Studio_LocalPoseParameter(pStudioHdr, poseParameter, seqdesc, iSequence, 1, s1, i1);
|
||
|
||
panim[0] = &((CStudioHdr *)pStudioHdr)->pAnimdesc(pStudioHdr->iRelativeAnim(iSequence, seqdesc.anim(i0, i1)));
|
||
weight[0] = (1 - s0) * (1 - s1);
|
||
|
||
panim[1] = &((CStudioHdr *)pStudioHdr)->pAnimdesc(pStudioHdr->iRelativeAnim(iSequence, seqdesc.anim(i0 + 1, i1)));
|
||
weight[1] = (s0)* (1 - s1);
|
||
|
||
panim[2] = &((CStudioHdr *)pStudioHdr)->pAnimdesc(pStudioHdr->iRelativeAnim(iSequence, seqdesc.anim(i0, i1 + 1)));
|
||
weight[2] = (1 - s0) * (s1);
|
||
|
||
panim[3] = &((CStudioHdr *)pStudioHdr)->pAnimdesc(pStudioHdr->iRelativeAnim(iSequence, seqdesc.anim(i0 + 1, i1 + 1)));
|
||
weight[3] = (s0)* (s1);
|
||
|
||
Assert(weight[0] >= 0.0f && weight[1] >= 0.0f && weight[2] >= 0.0f && weight[3] >= 0.0f);
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: returns max frame number for a sequence
|
||
//-----------------------------------------------------------------------------
|
||
|
||
int Studio_MaxFrame(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[])
|
||
{
|
||
mstudioanimdesc_t *panim[4];
|
||
float weight[4];
|
||
|
||
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence);
|
||
Studio_SeqAnims(pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight);
|
||
|
||
float maxFrame = 0;
|
||
for (int i = 0; i < 4; i++)
|
||
{
|
||
if (weight[i] > 0)
|
||
{
|
||
maxFrame += panim[i]->numframes * weight[i];
|
||
}
|
||
}
|
||
|
||
if (maxFrame > 1)
|
||
maxFrame -= 1;
|
||
|
||
|
||
// FIXME: why does the weights sometimes not exactly add it 1.0 and this sometimes rounds down?
|
||
return (maxFrame + 0.01);
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: returns frames per second of a sequence
|
||
//-----------------------------------------------------------------------------
|
||
|
||
float Studio_FPS(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[])
|
||
{
|
||
mstudioanimdesc_t *panim[4];
|
||
float weight[4];
|
||
|
||
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence);
|
||
Studio_SeqAnims(pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight);
|
||
|
||
float t = 0;
|
||
|
||
for (int i = 0; i < 4; i++)
|
||
{
|
||
if (weight[i] > 0)
|
||
{
|
||
t += panim[i]->fps * weight[i];
|
||
}
|
||
}
|
||
return t;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: returns cycles per second of a sequence (cycles/second)
|
||
//-----------------------------------------------------------------------------
|
||
|
||
float Studio_CPS(const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[])
|
||
{
|
||
mstudioanimdesc_t *panim[4];
|
||
float weight[4];
|
||
|
||
Studio_SeqAnims(pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight);
|
||
|
||
float t = 0;
|
||
|
||
for (int i = 0; i < 4; i++)
|
||
{
|
||
if (weight[i] > 0 && panim[i]->numframes > 1)
|
||
{
|
||
t += (panim[i]->fps / (panim[i]->numframes - 1)) * weight[i];
|
||
}
|
||
}
|
||
return t;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: returns length (in seconds) of a sequence (seconds/cycle)
|
||
//-----------------------------------------------------------------------------
|
||
|
||
float Studio_Duration(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[])
|
||
{
|
||
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence);
|
||
float cps = Studio_CPS(pStudioHdr, seqdesc, iSequence, poseParameter);
|
||
|
||
if (cps == 0)
|
||
return 0.0f;
|
||
|
||
return 1.0f / cps;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: calculate changes in position and angle relative to the start of an animations cycle
|
||
// Output: updated position and angle, relative to the origin
|
||
// returns false if animation is not a movement animation
|
||
//-----------------------------------------------------------------------------
|
||
|
||
bool Studio_AnimPosition(mstudioanimdesc_t *panim, float flCycle, Vector &vecPos, QAngle &vecAngle)
|
||
{
|
||
float prevframe = 0;
|
||
vecPos.Init();
|
||
vecAngle.Init();
|
||
|
||
if (panim->nummovements == 0)
|
||
return false;
|
||
|
||
int iLoops = 0;
|
||
if (flCycle > 1.0)
|
||
{
|
||
iLoops = (int)flCycle;
|
||
}
|
||
else if (flCycle < 0.0)
|
||
{
|
||
iLoops = (int)flCycle - 1;
|
||
}
|
||
flCycle = flCycle - iLoops;
|
||
|
||
float flFrame = flCycle * (panim->numframes - 1);
|
||
|
||
for (int i = 0; i < panim->nummovements; i++)
|
||
{
|
||
mstudiomovement_t *pmove = panim->pMovement(i);
|
||
|
||
if (pmove->endframe >= flFrame)
|
||
{
|
||
float f = (flFrame - prevframe) / (pmove->endframe - prevframe);
|
||
|
||
float d = pmove->v0 * f + 0.5 * (pmove->v1 - pmove->v0) * f * f;
|
||
|
||
vecPos = vecPos + d * pmove->vector;
|
||
vecAngle.y = vecAngle.y * (1 - f) + pmove->angle * f;
|
||
if (iLoops != 0)
|
||
{
|
||
mstudiomovement_t *pmove = panim->pMovement(panim->nummovements - 1);
|
||
vecPos = vecPos + iLoops * pmove->position;
|
||
vecAngle.y = vecAngle.y + iLoops * pmove->angle;
|
||
}
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
prevframe = pmove->endframe;
|
||
vecPos = pmove->position;
|
||
vecAngle.y = pmove->angle;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: calculate instantaneous velocity in ips at a given point
|
||
// in the animations cycle
|
||
// Output: velocity vector, relative to identity orientation
|
||
// returns false if animation is not a movement animation
|
||
//-----------------------------------------------------------------------------
|
||
|
||
bool Studio_AnimVelocity(mstudioanimdesc_t *panim, float flCycle, Vector &vecVelocity)
|
||
{
|
||
float prevframe = 0;
|
||
|
||
float flFrame = flCycle * (panim->numframes - 1);
|
||
flFrame = flFrame - (int)(flFrame / (panim->numframes - 1));
|
||
|
||
for (int i = 0; i < panim->nummovements; i++)
|
||
{
|
||
mstudiomovement_t *pmove = panim->pMovement(i);
|
||
|
||
if (pmove->endframe >= flFrame)
|
||
{
|
||
float f = (flFrame - prevframe) / (pmove->endframe - prevframe);
|
||
|
||
float vel = pmove->v0 * (1 - f) + pmove->v1 * f;
|
||
// scale from per block to per sec velocity
|
||
vel = vel * panim->fps / (pmove->endframe - prevframe);
|
||
|
||
vecVelocity = pmove->vector * vel;
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
prevframe = pmove->endframe;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: calculate changes in position and angle between two points in an animation cycle
|
||
// Output: updated position and angle, relative to CycleFrom being at the origin
|
||
// returns false if animation is not a movement animation
|
||
//-----------------------------------------------------------------------------
|
||
|
||
bool Studio_AnimMovement(mstudioanimdesc_t *panim, float flCycleFrom, float flCycleTo, Vector &deltaPos, QAngle &deltaAngle)
|
||
{
|
||
if (panim->nummovements == 0)
|
||
return false;
|
||
|
||
Vector startPos;
|
||
QAngle startA;
|
||
Studio_AnimPosition(panim, flCycleFrom, startPos, startA);
|
||
|
||
Vector endPos;
|
||
QAngle endA;
|
||
Studio_AnimPosition(panim, flCycleTo, endPos, endA);
|
||
|
||
Vector tmp = endPos - startPos;
|
||
deltaAngle.y = endA.y - startA.y;
|
||
VectorYawRotate(tmp, -startA.y, deltaPos);
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: finds how much of an animation to play to move given linear distance
|
||
//-----------------------------------------------------------------------------
|
||
|
||
float Studio_FindAnimDistance(mstudioanimdesc_t *panim, float flDist)
|
||
{
|
||
float prevframe = 0;
|
||
|
||
if (flDist <= 0)
|
||
return 0.0;
|
||
|
||
for (int i = 0; i < panim->nummovements; i++)
|
||
{
|
||
mstudiomovement_t *pmove = panim->pMovement(i);
|
||
|
||
float flMove = (pmove->v0 + pmove->v1) * 0.5;
|
||
|
||
if (flMove >= flDist)
|
||
{
|
||
float root1, root2;
|
||
|
||
// d = V0 * t + 1/2 (V1-V0) * t^2
|
||
if (SolveQuadratic(0.5 * (pmove->v1 - pmove->v0), pmove->v0, -flDist, root1, root2))
|
||
{
|
||
float cpf = 1.0 / (panim->numframes - 1); // cycles per frame
|
||
|
||
return (prevframe + root1 * (pmove->endframe - prevframe)) * cpf;
|
||
}
|
||
return 0.0;
|
||
}
|
||
else
|
||
{
|
||
flDist -= flMove;
|
||
prevframe = pmove->endframe;
|
||
}
|
||
}
|
||
return 1.0;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: calculate changes in position and angle between two points in a sequences cycle
|
||
// Output: updated position and angle, relative to CycleFrom being at the origin
|
||
// returns false if sequence is not a movement sequence
|
||
//-----------------------------------------------------------------------------
|
||
|
||
bool Studio_SeqMovement(const CStudioHdr *pStudioHdr, int iSequence, float flCycleFrom, float flCycleTo, const float poseParameter[], Vector &deltaPos, QAngle &deltaAngles)
|
||
{
|
||
mstudioanimdesc_t *panim[4];
|
||
float weight[4];
|
||
|
||
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence);
|
||
|
||
Studio_SeqAnims(pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight);
|
||
|
||
deltaPos.Init();
|
||
deltaAngles.Init();
|
||
|
||
bool found = false;
|
||
|
||
for (int i = 0; i < 4; i++)
|
||
{
|
||
if (weight[i])
|
||
{
|
||
Vector localPos;
|
||
QAngle localAngles;
|
||
|
||
localPos.Init();
|
||
localAngles.Init();
|
||
|
||
if (Studio_AnimMovement(panim[i], flCycleFrom, flCycleTo, localPos, localAngles))
|
||
{
|
||
found = true;
|
||
deltaPos = deltaPos + localPos * weight[i];
|
||
// FIXME: this makes no sense
|
||
deltaAngles = deltaAngles + localAngles * weight[i];
|
||
}
|
||
else if (!(panim[i]->flags & STUDIO_DELTA) && panim[i]->nummovements == 0 && seqdesc.weight(0) > 0.0)
|
||
{
|
||
found = true;
|
||
}
|
||
}
|
||
}
|
||
return found;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: calculate instantaneous velocity in ips at a given point in the sequence's cycle
|
||
// Output: velocity vector, relative to identity orientation
|
||
// returns false if sequence is not a movement sequence
|
||
//-----------------------------------------------------------------------------
|
||
|
||
bool Studio_SeqVelocity(const CStudioHdr *pStudioHdr, int iSequence, float flCycle, const float poseParameter[], Vector &vecVelocity)
|
||
{
|
||
mstudioanimdesc_t *panim[4];
|
||
float weight[4];
|
||
|
||
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence);
|
||
Studio_SeqAnims(pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight);
|
||
|
||
vecVelocity.Init();
|
||
|
||
bool found = false;
|
||
|
||
for (int i = 0; i < 4; i++)
|
||
{
|
||
if (weight[i])
|
||
{
|
||
Vector vecLocalVelocity;
|
||
|
||
if (Studio_AnimVelocity(panim[i], flCycle, vecLocalVelocity))
|
||
{
|
||
vecVelocity = vecVelocity + vecLocalVelocity * weight[i];
|
||
found = true;
|
||
}
|
||
}
|
||
}
|
||
return found;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: finds how much of an sequence to play to move given linear distance
|
||
//-----------------------------------------------------------------------------
|
||
|
||
float Studio_FindSeqDistance(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], float flDist)
|
||
{
|
||
mstudioanimdesc_t *panim[4];
|
||
float weight[4];
|
||
|
||
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence);
|
||
Studio_SeqAnims(pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight);
|
||
|
||
float flCycle = 0;
|
||
|
||
for (int i = 0; i < 4; i++)
|
||
{
|
||
if (weight[i])
|
||
{
|
||
float flLocalCycle = Studio_FindAnimDistance(panim[i], flDist);
|
||
flCycle = flCycle + flLocalCycle * weight[i];
|
||
}
|
||
}
|
||
return flCycle;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: lookup attachment by name
|
||
//-----------------------------------------------------------------------------
|
||
|
||
int Studio_FindAttachment(const CStudioHdr *pStudioHdr, const char *pAttachmentName)
|
||
{
|
||
if (pStudioHdr && pStudioHdr->SequencesAvailable())
|
||
{
|
||
// Extract the bone index from the name
|
||
for (int i = 0; i < pStudioHdr->GetNumAttachments(); i++)
|
||
{
|
||
if (!V_stricmp(pAttachmentName, ((CStudioHdr *)pStudioHdr)->pAttachment(i).pszName()))
|
||
{
|
||
return i;
|
||
}
|
||
}
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: lookup attachments by substring. Randomly return one of the matching attachments.
|
||
//-----------------------------------------------------------------------------
|
||
|
||
int Studio_FindRandomAttachment(const CStudioHdr *pStudioHdr, const char *pAttachmentName)
|
||
{
|
||
if (pStudioHdr)
|
||
{
|
||
// First move them all matching attachments into a list
|
||
CUtlVector<int> matchingAttachments;
|
||
|
||
// Extract the bone index from the name
|
||
for (int i = 0; i < pStudioHdr->GetNumAttachments(); i++)
|
||
{
|
||
if (strstr(((CStudioHdr *)pStudioHdr)->pAttachment(i).pszName(), pAttachmentName))
|
||
{
|
||
matchingAttachments.AddToTail(i);
|
||
}
|
||
}
|
||
|
||
// Then randomly return one of the attachments
|
||
if (matchingAttachments.Size() > 0)
|
||
return matchingAttachments[RandomInt(0, matchingAttachments.Size() - 1)];
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: lookup bone by name
|
||
//-----------------------------------------------------------------------------
|
||
|
||
int Studio_BoneIndexByName(const CStudioHdr *pStudioHdr, const char *pName)
|
||
{
|
||
// binary search for the bone matching pName
|
||
int start = 0, end = pStudioHdr->numbones() - 1;
|
||
const byte *pBoneTable = pStudioHdr->GetBoneTableSortedByName();
|
||
mstudiobone_t *pbones = pStudioHdr->pBone(0);
|
||
while (start <= end)
|
||
{
|
||
int mid = (start + end) >> 1;
|
||
int cmp = Q_stricmp(pbones[pBoneTable[mid]].pszName(), pName);
|
||
|
||
if (cmp < 0)
|
||
{
|
||
start = mid + 1;
|
||
}
|
||
else if (cmp > 0)
|
||
{
|
||
end = mid - 1;
|
||
}
|
||
else
|
||
{
|
||
return pBoneTable[mid];
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
const char *Studio_GetDefaultSurfaceProps(CStudioHdr *pstudiohdr)
|
||
{
|
||
return pstudiohdr->pszSurfaceProp();
|
||
}
|
||
|
||
float Studio_GetMass(CStudioHdr *pstudiohdr)
|
||
{
|
||
return pstudiohdr->mass();
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: return pointer to sequence key value buffer
|
||
//-----------------------------------------------------------------------------
|
||
|
||
const char *Studio_GetKeyValueText(const CStudioHdr *pStudioHdr, int iSequence)
|
||
{
|
||
if (pStudioHdr && pStudioHdr->SequencesAvailable())
|
||
{
|
||
if (iSequence >= 0 && iSequence < pStudioHdr->GetNumSeq())
|
||
{
|
||
return ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence).KeyValueText();
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
bool Studio_PrefetchSequence(const CStudioHdr *pStudioHdr, int iSequence)
|
||
{
|
||
bool pendingload = false;
|
||
mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence);
|
||
int size0 = seqdesc.groupsize[0];
|
||
int size1 = seqdesc.groupsize[1];
|
||
for (int i = 0; i < size0; ++i)
|
||
{
|
||
for (int j = 0; j < size1; ++j)
|
||
{
|
||
mstudioanimdesc_t &animdesc = ((CStudioHdr *)pStudioHdr)->pAnimdesc(seqdesc.anim(i, j));
|
||
int iFrame = 0;
|
||
mstudioanim_t *panim = animdesc.pAnim(&iFrame);
|
||
if (!panim)
|
||
{
|
||
pendingload = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Everything for this sequence is resident?
|
||
return !pendingload;
|
||
}
|
||
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Purpose: Drive a flex controller from a component of a bone
|
||
//-----------------------------------------------------------------------------
|
||
void Studio_RunBoneFlexDrivers(float *pflFlexControllerWeights, const CStudioHdr *pStudioHdr, const Vector *pvPositions, const matrix3x4_t *pBoneToWorld, const matrix3x4_t &mRootToWorld)
|
||
{
|
||
bool bRootToWorldInvComputed = false;
|
||
matrix3x4_t mRootToWorldInv;
|
||
matrix3x4_t mParentInv;
|
||
matrix3x4_t mBoneLocal;
|
||
|
||
const int nBoneFlexDriverCount = pStudioHdr->BoneFlexDriverCount();
|
||
|
||
for (int i = 0; i < nBoneFlexDriverCount; ++i)
|
||
{
|
||
const mstudioboneflexdriver_t *pBoneFlexDriver = pStudioHdr->BoneFlexDriver(i);
|
||
const mstudiobone_t *pStudioBone = pStudioHdr->pBone(pBoneFlexDriver->m_nBoneIndex);
|
||
|
||
const int nControllerCount = pBoneFlexDriver->m_nControlCount;
|
||
|
||
if (pStudioBone->flags & BONE_USED_BY_BONE_MERGE)
|
||
{
|
||
// The local space version of the bone is not available if this is a bonemerged bone
|
||
// so do the slow computation of the local version of the bone from boneToWorld
|
||
|
||
if (pStudioBone->parent < 0)
|
||
{
|
||
if (!bRootToWorldInvComputed)
|
||
{
|
||
MatrixInvert(mRootToWorld, mRootToWorldInv);
|
||
bRootToWorldInvComputed = true;
|
||
}
|
||
|
||
MatrixMultiply(mRootToWorldInv, pBoneToWorld[pBoneFlexDriver->m_nBoneIndex], mBoneLocal);
|
||
}
|
||
else
|
||
{
|
||
MatrixInvert(pBoneToWorld[pStudioBone->parent], mParentInv);
|
||
MatrixMultiply(mParentInv, pBoneToWorld[pBoneFlexDriver->m_nBoneIndex], mBoneLocal);
|
||
}
|
||
|
||
for (int j = 0; j < nControllerCount; ++j)
|
||
{
|
||
const mstudioboneflexdrivercontrol_t *pController = pBoneFlexDriver->pBoneFlexDriverControl(j);
|
||
const mstudioflexcontroller_t *pFlexController = pStudioHdr->pFlexcontroller(static_cast< LocalFlexController_t >(pController->m_nFlexControllerIndex));
|
||
|
||
if (pFlexController->localToGlobal < 0)
|
||
continue;
|
||
|
||
Assert(pController->m_nFlexControllerIndex >= 0 && pController->m_nFlexControllerIndex < pStudioHdr->numflexcontrollers());
|
||
Assert(pController->m_nBoneComponent >= 0 && pController->m_nBoneComponent <= 2);
|
||
pflFlexControllerWeights[pFlexController->localToGlobal] =
|
||
RemapValClamped(mBoneLocal[pController->m_nBoneComponent][3], pController->m_flMin, pController->m_flMax, 0.0f, 1.0f);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
// Use the local space version of the bone directly for non-bonemerged bones
|
||
|
||
const Vector &position = pvPositions[pBoneFlexDriver->m_nBoneIndex];
|
||
|
||
for (int j = 0; j < nControllerCount; ++j)
|
||
{
|
||
const mstudioboneflexdrivercontrol_t *pController = pBoneFlexDriver->pBoneFlexDriverControl(j);
|
||
const mstudioflexcontroller_t *pFlexController = pStudioHdr->pFlexcontroller(static_cast< LocalFlexController_t >(pController->m_nFlexControllerIndex));
|
||
|
||
if (pFlexController->localToGlobal < 0)
|
||
continue;
|
||
|
||
Assert(pController->m_nFlexControllerIndex >= 0 && pController->m_nFlexControllerIndex < pStudioHdr->numflexcontrollers());
|
||
Assert(pController->m_nBoneComponent >= 0 && pController->m_nBoneComponent <= 2);
|
||
pflFlexControllerWeights[pFlexController->localToGlobal] =
|
||
RemapValClamped(position[pController->m_nBoneComponent], pController->m_flMin, pController->m_flMax, 0.0f, 1.0f);
|
||
}
|
||
}
|
||
}
|
||
}
|