//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //===========================================================================// #include "cbase.h" #include "tier0/dbg.h" #include "mathlib/mathlib.h" #include "bone_setup_hydra.h" #include #include "collisionutils.h" #include "vstdlib/random.h" #include "tier0/vprof.h" #include "bone_accessor.h" #include "mathlib/ssequaternion.h" #include "bitvec.h" #include "datamanager.h" #include "convar.h" #include "tier0/tslist.h" #include "vphysics_interface.h" #ifdef CLIENT_DLL #include "posedebugger.h" #endif // memdbgon must be the last include file in a .cpp file!!! #include "tier0/memdbgon.h" // ----------------------------------------------------------------- template class CBoneSetupMemoryPool_Hydra { public: T *Alloc() { T *p = (T *)m_FreeBlocks.Pop(); if (!p) { p = new T[MAXSTUDIOBONES]; if (((size_t)p) % TSLIST_NODE_ALIGNMENT != 0) DebuggerBreak(); } return p; } void Free(T *p) { m_FreeBlocks.Push((TSLNodeBase_t *)p); } private: CTSListBase m_FreeBlocks; }; CBoneSetupMemoryPool_Hydra g_QaternionPool; CBoneSetupMemoryPool_Hydra g_VectorPool; CBoneSetupMemoryPool_Hydra g_MatrixPool; // ----------------------------------------------------------------- CBoneCache_Hydra *CBoneCache_Hydra::CreateResource(const bonecacheparams_t_Hydra ¶ms) { short studioToCachedIndex[MAXSTUDIOBONES]; short cachedToStudioIndex[MAXSTUDIOBONES]; int cachedBoneCount = 0; for (int i = 0; i < params.pStudioHdr->numbones(); i++) { // skip bones that aren't part of the boneMask (and aren't the root bone) if (i != 0 && !(params.pStudioHdr->boneFlags(i) & params.boneMask)) { studioToCachedIndex[i] = -1; continue; } studioToCachedIndex[i] = cachedBoneCount; cachedToStudioIndex[cachedBoneCount] = i; cachedBoneCount++; } int tableSizeStudio = sizeof(short) * params.pStudioHdr->numbones(); int tableSizeCached = sizeof(short) * cachedBoneCount; int matrixSize = sizeof(matrix3x4_t) * cachedBoneCount; int size = (sizeof(CBoneCache_Hydra) + tableSizeStudio + tableSizeCached + matrixSize + 3) & ~3; CBoneCache_Hydra *pMem = (CBoneCache_Hydra *)malloc(size); Construct(pMem); pMem->Init(params, size, studioToCachedIndex, cachedToStudioIndex, cachedBoneCount); return pMem; } unsigned int CBoneCache_Hydra::EstimatedSize(const bonecacheparams_t_Hydra ¶ms) { // conservative estimate - max size return (params.pStudioHdr->numbones() * (sizeof(short) + sizeof(short) + sizeof(matrix3x4_t)) + 3) & ~3; } void CBoneCache_Hydra::DestroyResource() { free(this); } CBoneCache_Hydra::CBoneCache_Hydra() { m_size = 0; m_cachedBoneCount = 0; } void CBoneCache_Hydra::Init(const bonecacheparams_t_Hydra ¶ms, unsigned int size, short *pStudioToCached, short *pCachedToStudio, int cachedBoneCount) { m_cachedBoneCount = cachedBoneCount; m_size = size; m_timeValid = params.curtime; m_boneMask = params.boneMask; int studioTableSize = params.pStudioHdr->numbones() * sizeof(short); m_cachedToStudioOffset = studioTableSize; memcpy(StudioToCached(), pStudioToCached, studioTableSize); int cachedTableSize = cachedBoneCount * sizeof(short); memcpy(CachedToStudio(), pCachedToStudio, cachedTableSize); m_matrixOffset = (m_cachedToStudioOffset + cachedTableSize + 3) & ~3; UpdateBones(params.pBoneToWorld, params.pStudioHdr->numbones(), params.curtime); } void CBoneCache_Hydra::UpdateBones(const matrix3x4_t *pBoneToWorld, int numbones, float curtime) { matrix3x4_t *pBones = BoneArray(); const short *pCachedToStudio = CachedToStudio(); for (int i = 0; i < m_cachedBoneCount; i++) { int index = pCachedToStudio[i]; MatrixCopy(pBoneToWorld[index], pBones[i]); } m_timeValid = curtime; } matrix3x4_t *CBoneCache_Hydra::GetCachedBone(int studioIndex) { int cachedIndex = StudioToCached()[studioIndex]; if (cachedIndex >= 0) { return BoneArray() + cachedIndex; } return NULL; } void CBoneCache_Hydra::ReadCachedBones(matrix3x4_t *pBoneToWorld) { matrix3x4_t *pBones = BoneArray(); const short *pCachedToStudio = CachedToStudio(); for (int i = 0; i < m_cachedBoneCount; i++) { MatrixCopy(pBones[i], pBoneToWorld[pCachedToStudio[i]]); } } void CBoneCache_Hydra::ReadCachedBonePointers(matrix3x4_t **bones, int numbones) { memset(bones, 0, sizeof(matrix3x4_t *) * numbones); matrix3x4_t *pBones = BoneArray(); const short *pCachedToStudio = CachedToStudio(); for (int i = 0; i < m_cachedBoneCount; i++) { bones[pCachedToStudio[i]] = pBones + i; } } bool CBoneCache_Hydra::IsValid(float curtime, float dt) { if (curtime - m_timeValid <= dt) return true; return false; } // private functions matrix3x4_t *CBoneCache_Hydra::BoneArray() { return (matrix3x4_t *)((char *)(this + 1) + m_matrixOffset); } short *CBoneCache_Hydra::StudioToCached() { return (short *)((char *)(this + 1)); } short *CBoneCache_Hydra::CachedToStudio() { return (short *)((char *)(this + 1) + m_cachedToStudioOffset); } // Construct a singleton static CDataManager g_StudioBoneCache(24 * 1024L); CBoneCache_Hydra *Studio_GetBoneCache_Hydra(memhandle_t cacheHandle) { AUTO_LOCK(g_StudioBoneCache.AccessMutex()); return g_StudioBoneCache.GetResource_NoLock(cacheHandle); } memhandle_t Studio_CreateBoneCache_Hydra(bonecacheparams_t_Hydra ¶ms) { AUTO_LOCK(g_StudioBoneCache.AccessMutex()); return g_StudioBoneCache.CreateResource(params); } void Studio_DestroyBoneCache_Hydra(memhandle_t cacheHandle) { AUTO_LOCK(g_StudioBoneCache.AccessMutex()); g_StudioBoneCache.DestroyResource(cacheHandle); } void Studio_InvalidateBoneCache_Hydra(memhandle_t cacheHandle) { AUTO_LOCK(g_StudioBoneCache.AccessMutex()); CBoneCache_Hydra *pCache = g_StudioBoneCache.GetResource_NoLock(cacheHandle); if (pCache) { pCache->m_timeValid = -1.0f; } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void BuildBoneChain_Hydra( const CStudioHdr *pStudioHdr, const matrix3x4_t &rootxform, const Vector pos[], const Quaternion q[], int iBone, matrix3x4_t *pBoneToWorld) { CBoneBitList_Hydra boneComputed; BuildBoneChain_Hydra(pStudioHdr, rootxform, pos, q, iBone, pBoneToWorld, boneComputed); return; } //----------------------------------------------------------------------------- // Purpose: return a sub frame rotation for a single bone //----------------------------------------------------------------------------- void ExtractAnimValue_Hydra(int frame, mstudioanimvalue_t *panimvalue, float scale, float &v1, float &v2) { if (!panimvalue) { v1 = v2 = 0; return; } // Avoids a crash reading off the end of the data // There is probably a better long-term solution; Ken is going to look into it. if ((panimvalue->num.total == 1) && (panimvalue->num.valid == 1)) { v1 = v2 = panimvalue[1].value * scale; return; } int k = frame; // find the data list that has the frame while (panimvalue->num.total <= k) { k -= panimvalue->num.total; panimvalue += panimvalue->num.valid + 1; if (panimvalue->num.total == 0) { Assert(0); // running off the end of the animation stream is bad v1 = v2 = 0; return; } } if (panimvalue->num.valid > k) { // has valid animation data v1 = panimvalue[k + 1].value * scale; if (panimvalue->num.valid > k + 1) { // has valid animation blend data v2 = panimvalue[k + 2].value * scale; } else { if (panimvalue->num.total > k + 1) { // data repeats, no blend v2 = v1; } else { // pull blend from first data block in next list v2 = panimvalue[panimvalue->num.valid + 2].value * scale; } } } else { // get last valid data block v1 = panimvalue[panimvalue->num.valid].value * scale; if (panimvalue->num.total > k + 1) { // data repeats, no blend v2 = v1; } else { // pull blend from first data block in next list v2 = panimvalue[panimvalue->num.valid + 2].value * scale; } } } void ExtractAnimValue_Hydra(int frame, mstudioanimvalue_t *panimvalue, float scale, float &v1) { if (!panimvalue) { v1 = 0; return; } int k = frame; while (panimvalue->num.total <= k) { k -= panimvalue->num.total; panimvalue += panimvalue->num.valid + 1; if (panimvalue->num.total == 0) { Assert(0); // running off the end of the animation stream is bad v1 = 0; return; } } if (panimvalue->num.valid > k) { v1 = panimvalue[k + 1].value * scale; } else { // get last valid data block v1 = panimvalue[panimvalue->num.valid].value * scale; } } //----------------------------------------------------------------------------- // Purpose: return a sub frame rotation for a single bone //----------------------------------------------------------------------------- void CalcBoneQuaternion_Hydra(int frame, float s, const Quaternion &baseQuat, const RadianEuler &baseRot, const Vector &baseRotScale, int iBaseFlags, const Quaternion &baseAlignment, const mstudioanim_t *panim, Quaternion &q) { if (panim->flags & STUDIO_ANIM_RAWROT) { q = *(panim->pQuat48()); Assert(q.IsValid()); return; } if (panim->flags & STUDIO_ANIM_RAWROT2) { q = *(panim->pQuat64()); Assert(q.IsValid()); return; } if (!(panim->flags & STUDIO_ANIM_ANIMROT)) { if (panim->flags & STUDIO_ANIM_DELTA) { q.Init(0.0f, 0.0f, 0.0f, 1.0f); } else { q = baseQuat; } return; } mstudioanim_valueptr_t *pValuesPtr = panim->pRotV(); if (s > 0.001f) { QuaternionAligned q1, q2; RadianEuler angle1, angle2; ExtractAnimValue_Hydra(frame, pValuesPtr->pAnimvalue(0), baseRotScale.x, angle1.x, angle2.x); ExtractAnimValue_Hydra(frame, pValuesPtr->pAnimvalue(1), baseRotScale.y, angle1.y, angle2.y); ExtractAnimValue_Hydra(frame, pValuesPtr->pAnimvalue(2), baseRotScale.z, angle1.z, angle2.z); if (!(panim->flags & STUDIO_ANIM_DELTA)) { angle1.x = angle1.x + baseRot.x; angle1.y = angle1.y + baseRot.y; angle1.z = angle1.z + baseRot.z; angle2.x = angle2.x + baseRot.x; angle2.y = angle2.y + baseRot.y; angle2.z = angle2.z + baseRot.z; } Assert(angle1.IsValid() && angle2.IsValid()); if (angle1.x != angle2.x || angle1.y != angle2.y || angle1.z != angle2.z) { AngleQuaternion(angle1, q1); AngleQuaternion(angle2, q2); #ifdef _X360 fltx4 q1simd, q2simd, qsimd; q1simd = LoadAlignedSIMD(q1); q2simd = LoadAlignedSIMD(q2); qsimd = QuaternionBlendSIMD(q1simd, q2simd, s); StoreUnalignedSIMD(q.Base(), qsimd); #else QuaternionBlend(q1, q2, s, q); #endif } else { AngleQuaternion(angle1, q); } } else { RadianEuler angle; ExtractAnimValue_Hydra(frame, pValuesPtr->pAnimvalue(0), baseRotScale.x, angle.x); ExtractAnimValue_Hydra(frame, pValuesPtr->pAnimvalue(1), baseRotScale.y, angle.y); ExtractAnimValue_Hydra(frame, pValuesPtr->pAnimvalue(2), baseRotScale.z, angle.z); if (!(panim->flags & STUDIO_ANIM_DELTA)) { angle.x = angle.x + baseRot.x; angle.y = angle.y + baseRot.y; angle.z = angle.z + baseRot.z; } Assert(angle.IsValid()); AngleQuaternion(angle, q); } Assert(q.IsValid()); // align to unified bone if (!(panim->flags & STUDIO_ANIM_DELTA) && (iBaseFlags & BONE_FIXED_ALIGNMENT)) { QuaternionAlign(baseAlignment, q, q); } } inline void CalcBoneQuaternion_Hydra(int frame, float s, const mstudiobone_t *pBone, const mstudiolinearbone_t *pLinearBones, const mstudioanim_t *panim, Quaternion &q) { if (pLinearBones) { CalcBoneQuaternion_Hydra(frame, s, pLinearBones->quat(panim->bone), pLinearBones->rot(panim->bone), pLinearBones->rotscale(panim->bone), pLinearBones->flags(panim->bone), pLinearBones->qalignment(panim->bone), panim, q); } else { CalcBoneQuaternion_Hydra(frame, s, pBone->quat, pBone->rot, pBone->rotscale, pBone->flags, pBone->qAlignment, panim, q); } } //----------------------------------------------------------------------------- // Purpose: return a sub frame position for a single bone //----------------------------------------------------------------------------- void CalcBonePosition_Hydra(int frame, float s, const Vector &basePos, const Vector &baseBoneScale, const mstudioanim_t *panim, Vector &pos) { if (panim->flags & STUDIO_ANIM_RAWPOS) { pos = *(panim->pPos()); Assert(pos.IsValid()); return; } else if (!(panim->flags & STUDIO_ANIM_ANIMPOS)) { if (panim->flags & STUDIO_ANIM_DELTA) { pos.Init(0.0f, 0.0f, 0.0f); } else { pos = basePos; } return; } mstudioanim_valueptr_t *pPosV = panim->pPosV(); int j; if (s > 0.001f) { float v1, v2; for (j = 0; j < 3; j++) { ExtractAnimValue_Hydra(frame, pPosV->pAnimvalue(j), baseBoneScale[j], v1, v2); pos[j] = v1 * (1.0 - s) + v2 * s; } } else { for (j = 0; j < 3; j++) { ExtractAnimValue_Hydra(frame, pPosV->pAnimvalue(j), baseBoneScale[j], pos[j]); } } if (!(panim->flags & STUDIO_ANIM_DELTA)) { pos.x = pos.x + basePos.x; pos.y = pos.y + basePos.y; pos.z = pos.z + basePos.z; } Assert(pos.IsValid()); } inline void CalcBonePosition_Hydra(int frame, float s, const mstudiobone_t *pBone, const mstudiolinearbone_t *pLinearBones, const mstudioanim_t *panim, Vector &pos) { if (pLinearBones) { CalcBonePosition_Hydra(frame, s, pLinearBones->pos(panim->bone), pLinearBones->posscale(panim->bone), panim, pos); } else { CalcBonePosition_Hydra(frame, s, pBone->pos, pBone->posscale, panim, pos); } } void SetupSingleBoneMatrix_Hydra( CStudioHdr *pOwnerHdr, int nSequence, int iFrame, int iBone, matrix3x4_t &mBoneLocal) { mstudioseqdesc_t &seqdesc = pOwnerHdr->pSeqdesc(nSequence); mstudioanimdesc_t &animdesc = pOwnerHdr->pAnimdesc(seqdesc.anim(0, 0)); int iLocalFrame = iFrame; mstudioanim_t *panim = animdesc.pAnim(&iLocalFrame); float s = 0; mstudiobone_t *pbone = pOwnerHdr->pBone(iBone); Quaternion boneQuat; Vector bonePos; // search for bone while (panim && panim->bone != iBone) { panim = panim->pNext(); } // look up animation if found, if not, initialize if (panim && seqdesc.weight(iBone) > 0) { CalcBoneQuaternion_Hydra(iLocalFrame, s, pbone, NULL, panim, boneQuat); CalcBonePosition_Hydra(iLocalFrame, s, pbone, NULL, panim, bonePos); } else if (animdesc.flags & STUDIO_DELTA) { boneQuat.Init(0.0f, 0.0f, 0.0f, 1.0f); bonePos.Init(0.0f, 0.0f, 0.0f); } else { boneQuat = pbone->quat; bonePos = pbone->pos; } QuaternionMatrix(boneQuat, bonePos, mBoneLocal); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- static void CalcDecompressedAnimation(const mstudiocompressedikerror_t *pCompressed, int iFrame, float fraq, Vector &pos, Quaternion &q) { if (fraq > 0.0001f) { Vector p1, p2; ExtractAnimValue_Hydra(iFrame, pCompressed->pAnimvalue(0), pCompressed->scale[0], p1.x, p2.x); ExtractAnimValue_Hydra(iFrame, pCompressed->pAnimvalue(1), pCompressed->scale[1], p1.y, p2.y); ExtractAnimValue_Hydra(iFrame, pCompressed->pAnimvalue(2), pCompressed->scale[2], p1.z, p2.z); pos = p1 * (1 - fraq) + p2 * fraq; Quaternion q1, q2; RadianEuler angle1, angle2; ExtractAnimValue_Hydra(iFrame, pCompressed->pAnimvalue(3), pCompressed->scale[3], angle1.x, angle2.x); ExtractAnimValue_Hydra(iFrame, pCompressed->pAnimvalue(4), pCompressed->scale[4], angle1.y, angle2.y); ExtractAnimValue_Hydra(iFrame, pCompressed->pAnimvalue(5), pCompressed->scale[5], angle1.z, angle2.z); if (angle1.x != angle2.x || angle1.y != angle2.y || angle1.z != angle2.z) { AngleQuaternion(angle1, q1); AngleQuaternion(angle2, q2); QuaternionBlend(q1, q2, fraq, q); } else { AngleQuaternion(angle1, q); } } else { ExtractAnimValue_Hydra(iFrame, pCompressed->pAnimvalue(0), pCompressed->scale[0], pos.x); ExtractAnimValue_Hydra(iFrame, pCompressed->pAnimvalue(1), pCompressed->scale[1], pos.y); ExtractAnimValue_Hydra(iFrame, pCompressed->pAnimvalue(2), pCompressed->scale[2], pos.z); RadianEuler angle; ExtractAnimValue_Hydra(iFrame, pCompressed->pAnimvalue(3), pCompressed->scale[3], angle.x); ExtractAnimValue_Hydra(iFrame, pCompressed->pAnimvalue(4), pCompressed->scale[4], angle.y); ExtractAnimValue_Hydra(iFrame, pCompressed->pAnimvalue(5), pCompressed->scale[5], angle.z); AngleQuaternion(angle, q); } } //----------------------------------------------------------------------------- // Purpose: translate animations done in a non-standard parent space //----------------------------------------------------------------------------- static void CalcLocalHierarchyAnimation( const CStudioHdr *pStudioHdr, matrix3x4_t *boneToWorld, CBoneBitList_Hydra &boneComputed, Vector *pos, Quaternion *q, //const mstudioanimdesc_t &animdesc, const mstudiobone_t *pbone, mstudiolocalhierarchy_t *pHierarchy, int iBone, int iNewParent, float cycle, int iFrame, float flFraq, int boneMask ) { Vector localPos; Quaternion localQ; // make fake root transform static matrix3x4_t rootXform(1.0f, 0, 0, 0, 0, 1.0f, 0, 0, 0, 0, 1.0f, 0); // FIXME: missing check to see if seq has a weight for this bone float weight = 1.0f; // check to see if there's a ramp on the influence if (pHierarchy->tail - pHierarchy->peak < 1.0f) { float index = cycle; if (pHierarchy->end > 1.0f && index < pHierarchy->start) index += 1.0f; if (index < pHierarchy->start) return; if (index >= pHierarchy->end) return; if (index < pHierarchy->peak && pHierarchy->start != pHierarchy->peak) { weight = (index - pHierarchy->start) / (pHierarchy->peak - pHierarchy->start); } else if (index > pHierarchy->tail && pHierarchy->end != pHierarchy->tail) { weight = (pHierarchy->end - index) / (pHierarchy->end - pHierarchy->tail); } weight = SimpleSpline(weight); } CalcDecompressedAnimation(pHierarchy->pLocalAnim(), iFrame - pHierarchy->iStart, flFraq, localPos, localQ); BuildBoneChain_Hydra(pStudioHdr, rootXform, pos, q, iBone, boneToWorld, boneComputed); BuildBoneChain_Hydra(pStudioHdr, rootXform, pos, q, iNewParent, boneToWorld, boneComputed); matrix3x4_t localXform; AngleMatrix(localQ, localPos, localXform); ConcatTransforms(boneToWorld[iNewParent], localXform, boneToWorld[iBone]); // back solve Vector p1; Quaternion q1; int n = pbone[iBone].parent; if (n == -1) { if (weight == 1.0f) { MatrixAngles(boneToWorld[iBone], q[iBone], pos[iBone]); } else { MatrixAngles(boneToWorld[iBone], q1, p1); QuaternionSlerp(q[iBone], q1, weight, q[iBone]); pos[iBone] = Lerp(weight, p1, pos[iBone]); } } else { matrix3x4_t worldToBone; MatrixInvert(boneToWorld[n], worldToBone); matrix3x4_t local; ConcatTransforms(worldToBone, boneToWorld[iBone], local); if (weight == 1.0f) { MatrixAngles(local, q[iBone], pos[iBone]); } else { MatrixAngles(local, q1, p1); QuaternionSlerp(q[iBone], q1, weight, q[iBone]); pos[iBone] = Lerp(weight, p1, pos[iBone]); } } } //----------------------------------------------------------------------------- // Purpose: Calc Zeroframe Data //----------------------------------------------------------------------------- static void CalcZeroframeData(const CStudioHdr *pStudioHdr, const studiohdr_t *pAnimStudioHdr, const virtualgroup_t *pAnimGroup, const mstudiobone_t *pAnimbone, mstudioanimdesc_t &animdesc, float fFrame, Vector *pos, Quaternion *q, int boneMask, float flWeight) { byte *pData = animdesc.pZeroFrameData(); if (!pData) return; int i, j; // Msg("zeroframe %s\n", animdesc.pszName() ); if (animdesc.zeroframecount == 1) { for (j = 0; j < pAnimStudioHdr->numbones; j++) { if (pAnimGroup) i = pAnimGroup->masterBone[j]; else i = j; if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_POS) { if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask)) { Vector p = *(Vector48 *)pData; pos[i] = pos[i] * (1.0f - flWeight) + p * flWeight; Assert(pos[i].IsValid()); } pData += sizeof(Vector48); } if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_ROT) { if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask)) { Quaternion q0 = *(Quaternion64 *)pData; QuaternionBlend(q[i], q0, flWeight, q[i]); Assert(q[i].IsValid()); } pData += sizeof(Quaternion64); } } } else { float s1; int index = fFrame / animdesc.zeroframespan; if (index >= animdesc.zeroframecount - 1) { index = animdesc.zeroframecount - 2; s1 = 1.0f; } else { s1 = clamp((fFrame - index * animdesc.zeroframespan) / animdesc.zeroframespan, 0.0f, 1.0f); } int i0 = max(index - 1, 0); int i1 = index; int i2 = min(index + 1, animdesc.zeroframecount - 1); for (j = 0; j < pAnimStudioHdr->numbones; j++) { if (pAnimGroup) i = pAnimGroup->masterBone[j]; else i = j; if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_POS) { if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask)) { Vector p0 = *(((Vector48 *)pData) + i0); Vector p1 = *(((Vector48 *)pData) + i1); Vector p2 = *(((Vector48 *)pData) + i2); Vector p3; Hermite_Spline(p0, p1, p2, s1, p3); pos[i] = pos[i] * (1.0f - flWeight) + p3 * flWeight; Assert(pos[i].IsValid()); } pData += sizeof(Vector48) * animdesc.zeroframecount; } if (pAnimbone[j].flags & BONE_HAS_SAVEFRAME_ROT) { if ((i >= 0) && (pStudioHdr->boneFlags(i) & boneMask)) { Quaternion q0 = *(((Quaternion64 *)pData) + i0); Quaternion q1 = *(((Quaternion64 *)pData) + i1); Quaternion q2 = *(((Quaternion64 *)pData) + i2); if (flWeight == 1.0f) { Hermite_Spline(q0, q1, q2, s1, q[i]); } else { Quaternion q3; Hermite_Spline(q0, q1, q2, s1, q3); QuaternionBlend(q[i], q3, flWeight, q[i]); } Assert(q[i].IsValid()); } pData += sizeof(Quaternion64) * animdesc.zeroframecount; } } } } //----------------------------------------------------------------------------- // Purpose: Find and decode a sub-frame of animation, remapping the skeleton bone indexes //----------------------------------------------------------------------------- static void CalcVirtualAnimation(virtualmodel_t *pVModel, const CStudioHdr *pStudioHdr, Vector *pos, Quaternion *q, mstudioseqdesc_t &seqdesc, int sequence, int animation, float cycle, int boneMask) { int i, j, k; const mstudiobone_t *pbone; const virtualgroup_t *pSeqGroup; const studiohdr_t *pSeqStudioHdr; const mstudiolinearbone_t *pSeqLinearBones; const mstudiobone_t *pSeqbone; const mstudioanim_t *panim; const studiohdr_t *pAnimStudioHdr; const mstudiolinearbone_t *pAnimLinearBones; const mstudiobone_t *pAnimbone; const virtualgroup_t *pAnimGroup; pSeqGroup = pVModel->pSeqGroup(sequence); int baseanimation = pStudioHdr->iRelativeAnim(sequence, animation); mstudioanimdesc_t &animdesc = ((CStudioHdr *)pStudioHdr)->pAnimdesc(baseanimation); pSeqStudioHdr = ((CStudioHdr *)pStudioHdr)->pSeqStudioHdr(sequence); pSeqLinearBones = pSeqStudioHdr->pLinearBones(); pSeqbone = pSeqStudioHdr->pBone(0); pAnimGroup = pVModel->pAnimGroup(baseanimation); pAnimStudioHdr = ((CStudioHdr *)pStudioHdr)->pAnimStudioHdr(baseanimation); pAnimLinearBones = pAnimStudioHdr->pLinearBones(); pAnimbone = pAnimStudioHdr->pBone(0); int iFrame; float s; float fFrame = cycle * (animdesc.numframes - 1); iFrame = (int)fFrame; s = (fFrame - iFrame); int iLocalFrame = iFrame; float flStall; panim = animdesc.pAnim(&iLocalFrame, flStall); float *pweight = seqdesc.pBoneweight(0); pbone = pStudioHdr->pBone(0); for (i = 0; i < pStudioHdr->numbones(); i++) { if (pStudioHdr->boneFlags(i) & boneMask) { int j = pSeqGroup->boneMap[i]; if (j >= 0 && pweight[j] > 0.0f) { if (animdesc.flags & STUDIO_DELTA) { q[i].Init(0.0f, 0.0f, 0.0f, 1.0f); pos[i].Init(0.0f, 0.0f, 0.0f); } else if (pSeqLinearBones) { q[i] = pSeqLinearBones->quat(j); pos[i] = pSeqLinearBones->pos(j); } else { q[i] = pSeqbone[j].quat; pos[i] = pSeqbone[j].pos; } #ifdef STUDIO_ENABLE_PERF_COUNTERS pStudioHdr->m_nPerfUsedBones++; #endif } } } // if the animation isn't available, look for the zero frame cache if (!panim) { CalcZeroframeData(pStudioHdr, pAnimStudioHdr, pAnimGroup, pAnimbone, animdesc, fFrame, pos, q, boneMask, 1.0); return; } // FIXME: change encoding so that bone -1 is never the case while (panim && panim->bone < 255) { j = pAnimGroup->masterBone[panim->bone]; if (j >= 0 && (pStudioHdr->boneFlags(j) & boneMask)) { k = pSeqGroup->boneMap[j]; if (k >= 0 && pweight[k] > 0.0f) { CalcBoneQuaternion_Hydra(iLocalFrame, s, &pAnimbone[panim->bone], pAnimLinearBones, panim, q[j]); CalcBonePosition_Hydra(iLocalFrame, s, &pAnimbone[panim->bone], pAnimLinearBones, panim, pos[j]); #ifdef STUDIO_ENABLE_PERF_COUNTERS pStudioHdr->m_nPerfAnimatedBones++; #endif } } panim = panim->pNext(); } // cross fade in previous zeroframe data if (flStall > 0.0f) { CalcZeroframeData(pStudioHdr, pAnimStudioHdr, pAnimGroup, pAnimbone, animdesc, fFrame, pos, q, boneMask, flStall); } // calculate a local hierarchy override if (animdesc.numlocalhierarchy) { matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList_Hydra boneComputed; int i; for (i = 0; i < animdesc.numlocalhierarchy; i++) { mstudiolocalhierarchy_t *pHierarchy = animdesc.pHierarchy(i); if (!pHierarchy) break; int iBone = pAnimGroup->masterBone[pHierarchy->iBone]; if (iBone >= 0 && (pStudioHdr->boneFlags(iBone) & boneMask)) { int iNewParent = pAnimGroup->masterBone[pHierarchy->iNewParent]; if (iNewParent >= 0 && (pStudioHdr->boneFlags(iNewParent) & boneMask)) { CalcLocalHierarchyAnimation(pStudioHdr, boneToWorld, boneComputed, pos, q, pbone, pHierarchy, iBone, iNewParent, cycle, iFrame, s, boneMask); } } } g_MatrixPool.Free(boneToWorld); } } //----------------------------------------------------------------------------- // Purpose: Find and decode a sub-frame of animation //----------------------------------------------------------------------------- static void CalcAnimation_Hydra(const CStudioHdr *pStudioHdr, Vector *pos, Quaternion *q, mstudioseqdesc_t &seqdesc, int sequence, int animation, float cycle, int boneMask) { #ifdef STUDIO_ENABLE_PERF_COUNTERS pStudioHdr->m_nPerfAnimationLayers++; #endif virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel(); if (pVModel) { CalcVirtualAnimation(pVModel, pStudioHdr, pos, q, seqdesc, sequence, animation, cycle, boneMask); return; } mstudioanimdesc_t &animdesc = ((CStudioHdr *)pStudioHdr)->pAnimdesc(animation); mstudiobone_t *pbone = pStudioHdr->pBone(0); const mstudiolinearbone_t *pLinearBones = pStudioHdr->pLinearBones(); int i; int iFrame; float s; float fFrame = cycle * (animdesc.numframes - 1); iFrame = (int)fFrame; s = (fFrame - iFrame); int iLocalFrame = iFrame; float flStall; mstudioanim_t *panim = animdesc.pAnim(&iLocalFrame, flStall); float *pweight = seqdesc.pBoneweight(0); // if the animation isn't available, look for the zero frame cache if (!panim) { // Msg("zeroframe %s\n", animdesc.pszName() ); // pre initialize for (i = 0; i < pStudioHdr->numbones(); i++, pbone++, pweight++) { if (*pweight > 0 && (pStudioHdr->boneFlags(i) & boneMask)) { if (animdesc.flags & STUDIO_DELTA) { q[i].Init(0.0f, 0.0f, 0.0f, 1.0f); pos[i].Init(0.0f, 0.0f, 0.0f); } else { q[i] = pbone->quat; pos[i] = pbone->pos; } } } CalcZeroframeData(pStudioHdr, pStudioHdr->GetRenderHdr(), NULL, pStudioHdr->pBone(0), animdesc, fFrame, pos, q, boneMask, 1.0); return; } // BUGBUG: the sequence, the anim, and the model can have all different bone mappings. for (i = 0; i < pStudioHdr->numbones(); i++, pbone++, pweight++) { if (panim && panim->bone == i) { if (*pweight > 0 && (pStudioHdr->boneFlags(i) & boneMask)) { CalcBoneQuaternion_Hydra(iLocalFrame, s, pbone, pLinearBones, panim, q[i]); CalcBonePosition_Hydra(iLocalFrame, s, pbone, pLinearBones, panim, pos[i]); #ifdef STUDIO_ENABLE_PERF_COUNTERS pStudioHdr->m_nPerfAnimatedBones++; pStudioHdr->m_nPerfUsedBones++; #endif } panim = panim->pNext(); } else if (*pweight > 0 && (pStudioHdr->boneFlags(i) & boneMask)) { if (animdesc.flags & STUDIO_DELTA) { q[i].Init(0.0f, 0.0f, 0.0f, 1.0f); pos[i].Init(0.0f, 0.0f, 0.0f); } else { q[i] = pbone->quat; pos[i] = pbone->pos; } #ifdef STUDIO_ENABLE_PERF_COUNTERS pStudioHdr->m_nPerfUsedBones++; #endif } } // cross fade in previous zeroframe data if (flStall > 0.0f) { CalcZeroframeData(pStudioHdr, pStudioHdr->GetRenderHdr(), NULL, pStudioHdr->pBone(0), animdesc, fFrame, pos, q, boneMask, flStall); } if (animdesc.numlocalhierarchy) { matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList_Hydra boneComputed; int i; for (i = 0; i < animdesc.numlocalhierarchy; i++) { mstudiolocalhierarchy_t *pHierarchy = animdesc.pHierarchy(i); if (!pHierarchy) break; if (pStudioHdr->boneFlags(pHierarchy->iBone) & boneMask) { if (pStudioHdr->boneFlags(pHierarchy->iNewParent) & boneMask) { CalcLocalHierarchyAnimation(pStudioHdr, boneToWorld, boneComputed, pos, q, pbone, pHierarchy, pHierarchy->iBone, pHierarchy->iNewParent, cycle, iFrame, s, boneMask); } } } g_MatrixPool.Free(boneToWorld); } } //----------------------------------------------------------------------------- // Purpose: qt = ( s * p ) * q //----------------------------------------------------------------------------- void QuaternionSM_Hydra(float s, const Quaternion &p, const Quaternion &q, Quaternion &qt) { Quaternion p1, q1; QuaternionScale(p, s, p1); QuaternionMult(p1, q, q1); QuaternionNormalize(q1); qt[0] = q1[0]; qt[1] = q1[1]; qt[2] = q1[2]; qt[3] = q1[3]; } #if ALLOW_SIMD_QUATERNION_MATH FORCEINLINE fltx4 QuaternionSM_HydraSIMD(float s, const fltx4 &p, const fltx4 &q) { fltx4 p1, q1, result; p1 = QuaternionScaleSIMD(p, s); q1 = QuaternionMultSIMD(p1, q); result = QuaternionNormalizeSIMD(q1); return result; } #endif //----------------------------------------------------------------------------- // Purpose: qt = p * ( s * q ) //----------------------------------------------------------------------------- void QuaternionMA_Hydra(const Quaternion &p, float s, const Quaternion &q, Quaternion &qt) { Quaternion p1, q1; QuaternionScale(q, s, q1); QuaternionMult(p, q1, p1); QuaternionNormalize(p1); qt[0] = p1[0]; qt[1] = p1[1]; qt[2] = p1[2]; qt[3] = p1[3]; } #if ALLOW_SIMD_QUATERNION_MATH FORCEINLINE fltx4 QuaternionMASIMD(const fltx4 &p, float s, const fltx4 &q) { fltx4 p1, q1, result; q1 = QuaternionScaleSIMD(q, s); p1 = QuaternionMultSIMD(p, q1); result = QuaternionNormalizeSIMD(p1); return result; } #endif //----------------------------------------------------------------------------- // Purpose: qt = p + s * q //----------------------------------------------------------------------------- void QuaternionAccumulate_Hydra(const Quaternion &p, float s, const Quaternion &q, Quaternion &qt) { Quaternion q2; QuaternionAlign(p, q, q2); qt[0] = p[0] + s * q2[0]; qt[1] = p[1] + s * q2[1]; qt[2] = p[2] + s * q2[2]; qt[3] = p[3] + s * q2[3]; } #if ALLOW_SIMD_QUATERNION_MATH FORCEINLINE fltx4 QuaternionAccumulateSIMD(const fltx4 &p, float s, const fltx4 &q) { fltx4 q2, s4, result; q2 = QuaternionAlignSIMD(p, q); s4 = ReplicateX4(s); result = MaddSIMD(s4, q2, p); return result; } #endif //----------------------------------------------------------------------------- // Purpose: blend together in world space q1,pos1 with q2,pos2. Return result in q1,pos1. // 0 returns q1, pos1. 1 returns q2, pos2 //----------------------------------------------------------------------------- void WorldSpaceSlerp_Hydra( const CStudioHdr *pStudioHdr, Quaternion q1[MAXSTUDIOBONES], Vector pos1[MAXSTUDIOBONES], mstudioseqdesc_t &seqdesc, int sequence, const Quaternion q2[MAXSTUDIOBONES], const Vector pos2[MAXSTUDIOBONES], float s, int boneMask) { int i, j; float s1; // weight of parent for q2, pos2 float s2; // weight for q2, pos2 // make fake root transform matrix3x4_t rootXform; SetIdentityMatrix(rootXform); // matrices for q2, pos2 matrix3x4_t *srcBoneToWorld = g_MatrixPool.Alloc(); CBoneBitList_Hydra srcBoneComputed; matrix3x4_t *destBoneToWorld = g_MatrixPool.Alloc(); CBoneBitList_Hydra destBoneComputed; matrix3x4_t *targetBoneToWorld = g_MatrixPool.Alloc(); CBoneBitList_Hydra targetBoneComputed; virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel(); const virtualgroup_t *pSeqGroup = NULL; if (pVModel) { pSeqGroup = pVModel->pSeqGroup(sequence); } mstudiobone_t *pbone = pStudioHdr->pBone(0); for (i = 0; i < pStudioHdr->numbones(); i++) { // skip unused bones if (!(pStudioHdr->boneFlags(i) & boneMask)) { continue; } int n = pbone[i].parent; s1 = 0.0; if (pSeqGroup) { j = pSeqGroup->boneMap[i]; if (j >= 0) { s2 = s * seqdesc.weight(j); // blend in based on this bones weight if (n != -1) { s1 = s * seqdesc.weight(pSeqGroup->boneMap[n]); } } else { s2 = 0.0; } } else { s2 = s * seqdesc.weight(i); // blend in based on this bones weight if (n != -1) { s1 = s * seqdesc.weight(n); } } if (s1 == 1.0 && s2 == 1.0) { pos1[i] = pos2[i]; q1[i] = q2[i]; } else if (s2 > 0.0) { Quaternion srcQ, destQ; Vector srcPos, destPos; Quaternion targetQ; Vector targetPos; Vector tmp; BuildBoneChain_Hydra(pStudioHdr, rootXform, pos1, q1, i, destBoneToWorld, destBoneComputed); BuildBoneChain_Hydra(pStudioHdr, rootXform, pos2, q2, i, srcBoneToWorld, srcBoneComputed); MatrixAngles(destBoneToWorld[i], destQ, destPos); MatrixAngles(srcBoneToWorld[i], srcQ, srcPos); QuaternionSlerp(destQ, srcQ, s2, targetQ); AngleMatrix(targetQ, destPos, targetBoneToWorld[i]); // back solve if (n == -1) { MatrixAngles(targetBoneToWorld[i], q1[i], tmp); } else { matrix3x4_t worldToBone; MatrixInvert(targetBoneToWorld[n], worldToBone); matrix3x4_t local; ConcatTransforms(worldToBone, targetBoneToWorld[i], local); MatrixAngles(local, q1[i], tmp); // blend bone lengths (local space) pos1[i] = Lerp(s2, pos1[i], pos2[i]); } } } g_MatrixPool.Free(srcBoneToWorld); g_MatrixPool.Free(destBoneToWorld); g_MatrixPool.Free(targetBoneToWorld); } //----------------------------------------------------------------------------- // Purpose: blend together q1,pos1 with q2,pos2. Return result in q1,pos1. // 0 returns q1, pos1. 1 returns q2, pos2 //----------------------------------------------------------------------------- void SlerpBones_Hydra( const CStudioHdr *pStudioHdr, Quaternion q1[MAXSTUDIOBONES], Vector pos1[MAXSTUDIOBONES], mstudioseqdesc_t &seqdesc, // source of q2 and pos2 int sequence, const QuaternionAligned q2[MAXSTUDIOBONES], const Vector pos2[MAXSTUDIOBONES], float s, int boneMask) { if (s <= 0.0f) return; if (s > 1.0f) { s = 1.0f; } if (seqdesc.flags & STUDIO_WORLD) { WorldSpaceSlerp_Hydra(pStudioHdr, q1, pos1, seqdesc, sequence, q2, pos2, s, boneMask); return; } int i, j; virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel(); const virtualgroup_t *pSeqGroup = NULL; if (pVModel) { pSeqGroup = pVModel->pSeqGroup(sequence); } // Build weightlist for all bones int nBoneCount = pStudioHdr->numbones(); float *pS2 = (float*)stackalloc(nBoneCount * sizeof(float)); for (i = 0; i < nBoneCount; i++) { // skip unused bones if (!(pStudioHdr->boneFlags(i) & boneMask)) { pS2[i] = 0.0f; continue; } if (!pSeqGroup) { pS2[i] = s * seqdesc.weight(i); // blend in based on this bones weight continue; } j = pSeqGroup->boneMap[i]; if (j >= 0) { pS2[i] = s * seqdesc.weight(j); // blend in based on this bones weight } else { pS2[i] = 0.0; } } float s1, s2; if (seqdesc.flags & STUDIO_DELTA) { for (i = 0; i < nBoneCount; i++) { s2 = pS2[i]; if (s2 <= 0.0f) continue; if (seqdesc.flags & STUDIO_POST) { #ifndef _X360 QuaternionMA_Hydra(q1[i], s2, q2[i], q1[i]); #else fltx4 q1simd = LoadUnalignedSIMD(q1[i].Base()); fltx4 q2simd = LoadAlignedSIMD(q2[i]); fltx4 result = QuaternionMASIMD(q1simd, s2, q2simd); StoreUnalignedSIMD(q1[i].Base(), result); #endif // FIXME: are these correct? pos1[i][0] = pos1[i][0] + pos2[i][0] * s2; pos1[i][1] = pos1[i][1] + pos2[i][1] * s2; pos1[i][2] = pos1[i][2] + pos2[i][2] * s2; } else { #ifndef _X360 QuaternionSM_Hydra(s2, q2[i], q1[i], q1[i]); #else fltx4 q1simd = LoadUnalignedSIMD(q1[i].Base()); fltx4 q2simd = LoadAlignedSIMD(q2[i]); fltx4 result = QuaternionSM_HydraSIMD(s2, q2simd, q1simd); StoreUnalignedSIMD(q1[i].Base(), result); #endif // FIXME: are these correct? pos1[i][0] = pos1[i][0] + pos2[i][0] * s2; pos1[i][1] = pos1[i][1] + pos2[i][1] * s2; pos1[i][2] = pos1[i][2] + pos2[i][2] * s2; } } return; } QuaternionAligned q3; for (i = 0; i < nBoneCount; i++) { s2 = pS2[i]; if (s2 <= 0.0f) continue; s1 = 1.0 - s2; #ifdef _X360 fltx4 q1simd, q2simd, result; q1simd = LoadUnalignedSIMD(q1[i].Base()); q2simd = LoadAlignedSIMD(q2[i]); #endif if (pStudioHdr->boneFlags(i) & BONE_FIXED_ALIGNMENT) { #ifndef _X360 QuaternionSlerpNoAlign(q2[i], q1[i], s1, q3); #else result = QuaternionSlerpNoAlignSIMD(q2simd, q1simd, s1); #endif } else { #ifndef _X360 QuaternionSlerp(q2[i], q1[i], s1, q3); #else result = QuaternionSlerpSIMD(q2simd, q1simd, s1); #endif } #ifndef _X360 q1[i][0] = q3[0]; q1[i][1] = q3[1]; q1[i][2] = q3[2]; q1[i][3] = q3[3]; #else StoreUnalignedSIMD(q1[i].Base(), result); #endif pos1[i][0] = pos1[i][0] * s1 + pos2[i][0] * s2; pos1[i][1] = pos1[i][1] * s1 + pos2[i][1] * s2; pos1[i][2] = pos1[i][2] * s1 + pos2[i][2] * s2; } } //----------------------------------------------------------------------------- // Purpose: Inter-animation blend. Assumes both types are identical. // blend together q1,pos1 with q2,pos2. Return result in q1,pos1. // 0 returns q1, pos1. 1 returns q2, pos2 //----------------------------------------------------------------------------- void BlendBones_Hydra( const CStudioHdr *pStudioHdr, Quaternion q1[MAXSTUDIOBONES], Vector pos1[MAXSTUDIOBONES], mstudioseqdesc_t &seqdesc, int sequence, const Quaternion q2[MAXSTUDIOBONES], const Vector pos2[MAXSTUDIOBONES], float s, int boneMask) { int i, j; Quaternion q3; virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel(); const virtualgroup_t *pSeqGroup = NULL; if (pVModel) { pSeqGroup = pVModel->pSeqGroup(sequence); } if (s <= 0) { Assert(0); // shouldn't have been called return; } else if (s >= 1.0) { Assert(0); // shouldn't have been called for (i = 0; i < pStudioHdr->numbones(); i++) { // skip unused bones if (!(pStudioHdr->boneFlags(i) & boneMask)) { continue; } if (pSeqGroup) { j = pSeqGroup->boneMap[i]; } else { j = i; } if (j >= 0 && seqdesc.weight(j) > 0.0) { q1[i] = q2[i]; pos1[i] = pos2[i]; } } return; } float s2 = s; float s1 = 1.0 - s2; for (i = 0; i < pStudioHdr->numbones(); i++) { // skip unused bones if (!(pStudioHdr->boneFlags(i) & boneMask)) { continue; } if (pSeqGroup) { j = pSeqGroup->boneMap[i]; } else { j = i; } if (j >= 0 && seqdesc.weight(j) > 0.0) { if (pStudioHdr->boneFlags(i) & BONE_FIXED_ALIGNMENT) { QuaternionBlendNoAlign(q2[i], q1[i], s1, q3); } else { QuaternionBlend(q2[i], q1[i], s1, q3); } q1[i][0] = q3[0]; q1[i][1] = q3[1]; q1[i][2] = q3[2]; q1[i][3] = q3[3]; pos1[i][0] = pos1[i][0] * s1 + pos2[i][0] * s2; pos1[i][1] = pos1[i][1] * s1 + pos2[i][1] * s2; pos1[i][2] = pos1[i][2] * s1 + pos2[i][2] * s2; } } } //----------------------------------------------------------------------------- // Purpose: Scale a set of bones. Must be of type delta //----------------------------------------------------------------------------- void ScaleBones_Hydra( const CStudioHdr *pStudioHdr, Quaternion q1[MAXSTUDIOBONES], Vector pos1[MAXSTUDIOBONES], int sequence, float s, int boneMask) { int i, j; Quaternion q3; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(sequence); virtualmodel_t *pVModel = pStudioHdr->GetVirtualModel(); const virtualgroup_t *pSeqGroup = NULL; if (pVModel) { pSeqGroup = pVModel->pSeqGroup(sequence); } float s2 = s; float s1 = 1.0 - s2; for (i = 0; i < pStudioHdr->numbones(); i++) { // skip unused bones if (!(pStudioHdr->boneFlags(i) & boneMask)) { continue; } if (pSeqGroup) { j = pSeqGroup->boneMap[i]; } else { j = i; } if (j >= 0 && seqdesc.weight(j) > 0.0) { QuaternionIdentityBlend(q1[i], s1, q1[i]); VectorScale(pos1[i], s2, pos1[i]); } } } //----------------------------------------------------------------------------- // Purpose: resolve a global pose parameter to the specific setting for this sequence //----------------------------------------------------------------------------- void Studio_LocalPoseParameter_Hydra(const CStudioHdr *pStudioHdr, const float poseParameter[], mstudioseqdesc_t &seqdesc, int iSequence, int iLocalIndex, float &flSetting, int &index) { int iPose = pStudioHdr->GetSharedPoseParameter(iSequence, seqdesc.paramindex[iLocalIndex]); if (iPose == -1) { flSetting = 0; index = 0; return; } const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)pStudioHdr)->pPoseParameter(iPose); float flValue = poseParameter[iPose]; if (Pose.loop) { float wrap = (Pose.start + Pose.end) / 2.0 + Pose.loop / 2.0; float shift = Pose.loop - wrap; flValue = flValue - Pose.loop * floor((flValue + shift) / Pose.loop); } if (seqdesc.posekeyindex == 0) { float flLocalStart = ((float)seqdesc.paramstart[iLocalIndex] - Pose.start) / (Pose.end - Pose.start); float flLocalEnd = ((float)seqdesc.paramend[iLocalIndex] - Pose.start) / (Pose.end - Pose.start); // convert into local range flSetting = (flValue - flLocalStart) / (flLocalEnd - flLocalStart); // clamp. This shouldn't ever need to happen if it's looping. if (flSetting < 0) flSetting = 0; if (flSetting > 1) flSetting = 1; index = 0; if (seqdesc.groupsize[iLocalIndex] > 2) { // estimate index index = (int)(flSetting * (seqdesc.groupsize[iLocalIndex] - 1)); if (index == seqdesc.groupsize[iLocalIndex] - 1) index = seqdesc.groupsize[iLocalIndex] - 2; flSetting = flSetting * (seqdesc.groupsize[iLocalIndex] - 1) - index; } } else { flValue = flValue * (Pose.end - Pose.start) + Pose.start; index = 0; // FIXME: this needs to be 2D // FIXME: this shouldn't be a linear search while (1) { flSetting = (flValue - seqdesc.poseKey(iLocalIndex, index)) / (seqdesc.poseKey(iLocalIndex, index + 1) - seqdesc.poseKey(iLocalIndex, index)); /* if (index > 0 && flSetting < 0.0) { index--; continue; } else */ if (index < seqdesc.groupsize[iLocalIndex] - 2 && flSetting > 1.0) { index++; continue; } break; } // clamp. if (flSetting < 0.0f) flSetting = 0.0f; if (flSetting > 1.0f) flSetting = 1.0f; } } void Studio_CalcBoneToBoneTransform_Hydra(const CStudioHdr *pStudioHdr, int inputBoneIndex, int outputBoneIndex, matrix3x4_t& matrixOut) { mstudiobone_t *pbone = pStudioHdr->pBone(inputBoneIndex); matrix3x4_t inputToPose; MatrixInvert(pbone->poseToBone, inputToPose); ConcatTransforms(pStudioHdr->pBone(outputBoneIndex)->poseToBone, inputToPose, matrixOut); } //----------------------------------------------------------------------------- // Purpose: calculate a pose for a single sequence //----------------------------------------------------------------------------- void InitPose_Hydra( const CStudioHdr *pStudioHdr, Vector pos[], Quaternion q[], int boneMask ) { if (!pStudioHdr->pLinearBones()) { for (int i = 0; i < pStudioHdr->numbones(); i++) { if (pStudioHdr->boneFlags(i) & boneMask) { mstudiobone_t *pbone = pStudioHdr->pBone(i); pos[i] = pbone->pos; q[i] = pbone->quat; } } } else { mstudiolinearbone_t *pLinearBones = pStudioHdr->pLinearBones(); for (int i = 0; i < pStudioHdr->numbones(); i++) { if (pStudioHdr->boneFlags(i) & boneMask) { pos[i] = pLinearBones->pos(i); q[i] = pLinearBones->quat(i); } } } } inline bool PoseIsAllZeros( const CStudioHdr *pStudioHdr, int sequence, mstudioseqdesc_t &seqdesc, int i0, int i1 ) { int baseanim; // remove "zero" positional blends baseanim = pStudioHdr->iRelativeAnim(sequence, seqdesc.anim(i0, i1)); mstudioanimdesc_t &anim = ((CStudioHdr *)pStudioHdr)->pAnimdesc(baseanim); return (anim.flags & STUDIO_ALLZEROS) != 0; } //----------------------------------------------------------------------------- // Purpose: turn a 2x2 blend into a 3 way triangle blend // Returns: returns the animination indices and barycentric coordinates of a triangle // the triangle is a right triangle, and the diagonal is between elements [0] and [2] //----------------------------------------------------------------------------- static ConVar anim_3wayblend("anim_3wayblend", "1", FCVAR_REPLICATED, "Toggle the 3-way animation blending code."); void Calc3WayBlendIndices_Hydra(int i0, int i1, float s0, float s1, const mstudioseqdesc_t &seqdesc, int *pAnimIndices, float *pWeight) { // Figure out which bi-section direction we are using to make triangles. bool bEven = (((i0 + i1) & 0x1) == 0); int x1, y1; int x2, y2; int x3, y3; // diagonal is between elements 1 & 3 // TL to BR if (bEven) { if (s0 > s1) { // B x1 = 0; y1 = 0; x2 = 1; y2 = 0; x3 = 1; y3 = 1; pWeight[0] = (1.0f - s0); pWeight[1] = s0 - s1; } else { // C x1 = 1; y1 = 1; x2 = 0; y2 = 1; x3 = 0; y3 = 0; pWeight[0] = s0; pWeight[1] = s1 - s0; } } // BL to TR else { float flTotal = s0 + s1; if (flTotal > 1.0f) { // D x1 = 1; y1 = 0; x2 = 1; y2 = 1; x3 = 0; y3 = 1; pWeight[0] = (1.0f - s1); pWeight[1] = s0 - 1.0f + s1; } else { // A x1 = 0; y1 = 1; x2 = 0; y2 = 0; x3 = 1; y3 = 0; pWeight[0] = s1; pWeight[1] = 1.0f - s0 - s1; } } pAnimIndices[0] = seqdesc.anim(i0 + x1, i1 + y1); pAnimIndices[1] = seqdesc.anim(i0 + x2, i1 + y2); pAnimIndices[2] = seqdesc.anim(i0 + x3, i1 + y3); /* float w0 = ((x2-x3)*(y3-s1) - (x3-s0)*(y2-y3)) / ((x1-x3)*(y2-y3) - (x2-x3)*(y1-y3)); float w1 = ((x1-x3)*(y3-s1) - (x3-s0)*(y1-y3)) / ((x2-x3)*(y1-y3) - (x1-x3)*(y2-y3)); Assert( pWeight[0] == w0 && pWeight[1] == w1 ); */ // clamp the diagonal if (pWeight[1] < 0.001f) pWeight[1] = 0.0f; pWeight[2] = 1.0f - pWeight[0] - pWeight[1]; Assert(pWeight[0] >= 0.0f && pWeight[0] <= 1.0f); Assert(pWeight[1] >= 0.0f && pWeight[1] <= 1.0f); Assert(pWeight[2] >= 0.0f && pWeight[2] <= 1.0f); } //----------------------------------------------------------------------------- // Purpose: calculate a pose for a single sequence //----------------------------------------------------------------------------- bool CalcPose_HydraSingle( const CStudioHdr *pStudioHdr, Vector pos[], Quaternion q[], mstudioseqdesc_t &seqdesc, int sequence, float cycle, const float poseParameter[], int boneMask, float flTime ) { bool bResult = true; Vector *pos2 = g_VectorPool.Alloc(); Quaternion *q2 = g_QaternionPool.Alloc(); Vector *pos3 = g_VectorPool.Alloc(); Quaternion *q3 = g_QaternionPool.Alloc(); if (sequence >= pStudioHdr->GetNumSeq()) { sequence = 0; seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(sequence); } int i0 = 0, i1 = 0; float s0 = 0, s1 = 0; Studio_LocalPoseParameter_Hydra(pStudioHdr, poseParameter, seqdesc, sequence, 0, s0, i0); Studio_LocalPoseParameter_Hydra(pStudioHdr, poseParameter, seqdesc, sequence, 1, s1, i1); if (seqdesc.flags & STUDIO_REALTIME) { float cps = Studio_CPS_Hydra(pStudioHdr, seqdesc, sequence, poseParameter); cycle = flTime * cps; cycle = cycle - (int)cycle; } else if (seqdesc.flags & STUDIO_CYCLEPOSE) { int iPose = pStudioHdr->GetSharedPoseParameter(sequence, seqdesc.cycleposeindex); if (iPose != -1) { /* const mstudioposeparamdesc_t &Pose = pStudioHdr->pPoseParameter( iPose ); cycle = poseParameter[ iPose ] * (Pose.end - Pose.start) + Pose.start; */ cycle = poseParameter[iPose]; } else { cycle = 0.0f; } } else if (cycle < 0 || cycle >= 1) { if (seqdesc.flags & STUDIO_LOOPING) { cycle = cycle - (int)cycle; if (cycle < 0) cycle += 1; } else { cycle = clamp(cycle, 0.0f, 1.0f); } } if (s0 < 0.001) { if (s1 < 0.001) { if (PoseIsAllZeros(pStudioHdr, sequence, seqdesc, i0, i1)) { bResult = false; } else { CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1), cycle, boneMask); } } else if (s1 > 0.999) { CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1 + 1), cycle, boneMask); } else { CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1), cycle, boneMask); CalcAnimation_Hydra(pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim(i0, i1 + 1), cycle, boneMask); BlendBones_Hydra(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s1, boneMask); } } else if (s0 > 0.999) { if (s1 < 0.001) { if (PoseIsAllZeros(pStudioHdr, sequence, seqdesc, i0 + 1, i1)) { bResult = false; } else { CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0 + 1, i1), cycle, boneMask); } } else if (s1 > 0.999) { CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0 + 1, i1 + 1), cycle, boneMask); } else { CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0 + 1, i1), cycle, boneMask); CalcAnimation_Hydra(pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim(i0 + 1, i1 + 1), cycle, boneMask); BlendBones_Hydra(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s1, boneMask); } } else { if (s1 < 0.001) { if (PoseIsAllZeros(pStudioHdr, sequence, seqdesc, i0 + 1, i1)) { CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1), cycle, boneMask); ScaleBones_Hydra(pStudioHdr, q, pos, sequence, 1.0 - s0, boneMask); } else if (PoseIsAllZeros(pStudioHdr, sequence, seqdesc, i0, i1)) { CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0 + 1, i1), cycle, boneMask); ScaleBones_Hydra(pStudioHdr, q, pos, sequence, s0, boneMask); } else { CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1), cycle, boneMask); CalcAnimation_Hydra(pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim(i0 + 1, i1), cycle, boneMask); BlendBones_Hydra(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s0, boneMask); } } else if (s1 > 0.999) { CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1 + 1), cycle, boneMask); CalcAnimation_Hydra(pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim(i0 + 1, i1 + 1), cycle, boneMask); BlendBones_Hydra(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s0, boneMask); } else if (!anim_3wayblend.GetBool()) { CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, seqdesc.anim(i0, i1), cycle, boneMask); CalcAnimation_Hydra(pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim(i0 + 1, i1), cycle, boneMask); BlendBones_Hydra(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s0, boneMask); CalcAnimation_Hydra(pStudioHdr, pos2, q2, seqdesc, sequence, seqdesc.anim(i0, i1 + 1), cycle, boneMask); CalcAnimation_Hydra(pStudioHdr, pos3, q3, seqdesc, sequence, seqdesc.anim(i0 + 1, i1 + 1), cycle, boneMask); BlendBones_Hydra(pStudioHdr, q2, pos2, seqdesc, sequence, q3, pos3, s0, boneMask); BlendBones_Hydra(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, s1, boneMask); } else { int iAnimIndices[3]; float weight[3]; Calc3WayBlendIndices_Hydra(i0, i1, s0, s1, seqdesc, iAnimIndices, weight); /* char buf[256]; sprintf( buf, "%d %6.2f %d %6.2f : %6.2f %6.2f %6.2f\n", i0, s0, i1, s1, weight[0], weight[1], weight[2] ); OutputDebugString( buf ); */ if (weight[1] < 0.001) { // on diagonal CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, iAnimIndices[0], cycle, boneMask); CalcAnimation_Hydra(pStudioHdr, pos2, q2, seqdesc, sequence, iAnimIndices[2], cycle, boneMask); BlendBones_Hydra(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, weight[2] / (weight[0] + weight[2]), boneMask); } else { CalcAnimation_Hydra(pStudioHdr, pos, q, seqdesc, sequence, iAnimIndices[0], cycle, boneMask); CalcAnimation_Hydra(pStudioHdr, pos2, q2, seqdesc, sequence, iAnimIndices[1], cycle, boneMask); BlendBones_Hydra(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, weight[1] / (weight[0] + weight[1]), boneMask); CalcAnimation_Hydra(pStudioHdr, pos3, q3, seqdesc, sequence, iAnimIndices[2], cycle, boneMask); BlendBones_Hydra(pStudioHdr, q, pos, seqdesc, sequence, q3, pos3, weight[2], boneMask); } } } g_VectorPool.Free(pos2); g_QaternionPool.Free(q2); g_VectorPool.Free(pos3); g_QaternionPool.Free(q3); return bResult; } //----------------------------------------------------------------------------- // Purpose: calculate a pose for a single sequence // adds autolayers, runs local ik rukes //----------------------------------------------------------------------------- void AddSequenceLayers( const CStudioHdr *pStudioHdr, CIKContext_Hydra *pIKContext, Vector pos[], Quaternion q[], mstudioseqdesc_t &seqdesc, int sequence, float cycle, const float poseParameter[], int boneMask, float flWeight, float flTime ) { for (int i = 0; i < seqdesc.numautolayers; i++) { mstudioautolayer_t *pLayer = seqdesc.pAutolayer(i); if (pLayer->flags & STUDIO_AL_LOCAL) continue; float layerCycle = cycle; float layerWeight = flWeight; if (pLayer->start != pLayer->end) { float s = 1.0; float index; if (!(pLayer->flags & STUDIO_AL_POSE)) { index = cycle; } else { int iSequence = pStudioHdr->iRelativeSeq(sequence, pLayer->iSequence); int iPose = pStudioHdr->GetSharedPoseParameter(iSequence, pLayer->iPose); if (iPose != -1) { const mstudioposeparamdesc_t &Pose = ((CStudioHdr *)pStudioHdr)->pPoseParameter(iPose); index = poseParameter[iPose] * (Pose.end - Pose.start) + Pose.start; } else { index = 0; } } if (index < pLayer->start) continue; if (index >= pLayer->end) continue; if (index < pLayer->peak && pLayer->start != pLayer->peak) { s = (index - pLayer->start) / (pLayer->peak - pLayer->start); } else if (index > pLayer->tail && pLayer->end != pLayer->tail) { s = (pLayer->end - index) / (pLayer->end - pLayer->tail); } if (pLayer->flags & STUDIO_AL_SPLINE) { s = SimpleSpline(s); } if ((pLayer->flags & STUDIO_AL_XFADE) && (index > pLayer->tail)) { layerWeight = (s * flWeight) / (1 - flWeight + s * flWeight); } else if (pLayer->flags & STUDIO_AL_NOBLEND) { layerWeight = s; } else { layerWeight = flWeight * s; } if (!(pLayer->flags & STUDIO_AL_POSE)) { layerCycle = (cycle - pLayer->start) / (pLayer->end - pLayer->start); } } int iSequence = pStudioHdr->iRelativeSeq(sequence, pLayer->iSequence); AccumulatePose(pStudioHdr, pIKContext, pos, q, iSequence, layerCycle, poseParameter, boneMask, layerWeight, flTime); } } //----------------------------------------------------------------------------- // Purpose: calculate a pose for a single sequence // adds autolayers, runs local ik rukes //----------------------------------------------------------------------------- void AddLocalLayers_hydra( const CStudioHdr *pStudioHdr, CIKContext_Hydra *pIKContext, Vector pos[], Quaternion q[], mstudioseqdesc_t &seqdesc, int sequence, float cycle, const float poseParameter[], int boneMask, float flWeight, float flTime ) { if (!(seqdesc.flags & STUDIO_LOCAL)) { return; } for (int i = 0; i < seqdesc.numautolayers; i++) { mstudioautolayer_t *pLayer = seqdesc.pAutolayer(i); if (!(pLayer->flags & STUDIO_AL_LOCAL)) continue; float layerCycle = cycle; float layerWeight = flWeight; if (pLayer->start != pLayer->end) { float s = 1.0; if (cycle < pLayer->start) continue; if (cycle >= pLayer->end) continue; if (cycle < pLayer->peak && pLayer->start != pLayer->peak) { s = (cycle - pLayer->start) / (pLayer->peak - pLayer->start); } else if (cycle > pLayer->tail && pLayer->end != pLayer->tail) { s = (pLayer->end - cycle) / (pLayer->end - pLayer->tail); } if (pLayer->flags & STUDIO_AL_SPLINE) { s = SimpleSpline(s); } if ((pLayer->flags & STUDIO_AL_XFADE) && (cycle > pLayer->tail)) { layerWeight = (s * flWeight) / (1 - flWeight + s * flWeight); } else if (pLayer->flags & STUDIO_AL_NOBLEND) { layerWeight = s; } else { layerWeight = flWeight * s; } layerCycle = (cycle - pLayer->start) / (pLayer->end - pLayer->start); } int iSequence = pStudioHdr->iRelativeSeq(sequence, pLayer->iSequence); AccumulatePose(pStudioHdr, pIKContext, pos, q, iSequence, layerCycle, poseParameter, boneMask, layerWeight, flTime); } } //----------------------------------------------------------------------------- // Purpose: calculate a pose for a single sequence // adds autolayers, runs local ik rukes //----------------------------------------------------------------------------- void CalcPose_Hydra( const CStudioHdr *pStudioHdr, CIKContext_Hydra *pIKContext, Vector pos[], Quaternion q[], int sequence, float cycle, const float poseParameter[], int boneMask, float flWeight, float flTime ) { mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(sequence); Assert(flWeight >= 0.0f && flWeight <= 1.0f); // This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up flWeight = clamp(flWeight, 0.0f, 1.0f); // add any IK locks to prevent numautolayers from moving extremities CIKContext_Hydra seq_ik; if (seqdesc.numiklocks) { seq_ik.Init(pStudioHdr, vec3_angle, vec3_origin, 0.0, 0, boneMask); // local space relative so absolute position doesn't mater seq_ik.AddSequenceLocks(seqdesc, pos, q); } CalcPose_HydraSingle(pStudioHdr, pos, q, seqdesc, sequence, cycle, poseParameter, boneMask, flTime); if (pIKContext) { pIKContext->AddDependencies(seqdesc, sequence, cycle, poseParameter, flWeight); } AddSequenceLayers(pStudioHdr, pIKContext, pos, q, seqdesc, sequence, cycle, poseParameter, boneMask, flWeight, flTime); if (seqdesc.numiklocks) { seq_ik.SolveSequenceLocks(seqdesc, pos, q); } } //----------------------------------------------------------------------------- // Purpose: accumulate a pose for a single sequence on top of existing animation // adds autolayers, runs local ik rukes //----------------------------------------------------------------------------- void AccumulatePose( const CStudioHdr *pStudioHdr, CIKContext_Hydra *pIKContext, Vector pos[], Quaternion q[], int sequence, float cycle, const float poseParameter[], int boneMask, float flWeight, float flTime ) { Vector pos2[MAXSTUDIOBONES]; QuaternionAligned q2[MAXSTUDIOBONES]; Assert(flWeight >= 0.0f && flWeight <= 1.0f); // This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up flWeight = clamp(flWeight, 0.0f, 1.0f); if (sequence < 0) return; #ifdef CLIENT_DLL // Trigger pose debugger //g_pPoseDebugger->AccumulatePose(pStudioHdr, pIKContext, pos, q, sequence, cycle, poseParameter, boneMask, flWeight, flTime); #endif mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(sequence); // add any IK locks to prevent extremities from moving CIKContext_Hydra seq_ik; if (seqdesc.numiklocks) { seq_ik.Init(pStudioHdr, vec3_angle, vec3_origin, 0.0, 0, boneMask); // local space relative so absolute position doesn't mater seq_ik.AddSequenceLocks(seqdesc, pos, q); } if (seqdesc.flags & STUDIO_LOCAL) { InitPose_Hydra(pStudioHdr, pos2, q2, boneMask); } if (CalcPose_HydraSingle(pStudioHdr, pos2, q2, seqdesc, sequence, cycle, poseParameter, boneMask, flTime)) { // this weight is wrong, the IK rules won't composite at the correct intensity AddLocalLayers_hydra(pStudioHdr, pIKContext, pos2, q2, seqdesc, sequence, cycle, poseParameter, boneMask, 1.0, flTime); SlerpBones_Hydra(pStudioHdr, q, pos, seqdesc, sequence, q2, pos2, flWeight, boneMask); } if (pIKContext) { pIKContext->AddDependencies(seqdesc, sequence, cycle, poseParameter, flWeight); } AddSequenceLayers(pStudioHdr, pIKContext, pos, q, seqdesc, sequence, cycle, poseParameter, boneMask, flWeight, flTime); if (seqdesc.numiklocks) { seq_ik.SolveSequenceLocks(seqdesc, pos, q); } } //----------------------------------------------------------------------------- // Purpose: blend together q1,pos1 with q2,pos2. Return result in q1,pos1. // 0 returns q1, pos1. 1 returns q2, pos2 //----------------------------------------------------------------------------- void CalcBoneAdj_Hydra( const CStudioHdr *pStudioHdr, Vector pos[], Quaternion q[], const float controllers[], int boneMask ) { int i, j, k; float value; mstudiobonecontroller_t *pbonecontroller; Vector p0; RadianEuler a0; Quaternion q0; for (j = 0; j < pStudioHdr->numbonecontrollers(); j++) { pbonecontroller = pStudioHdr->pBonecontroller(j); k = pbonecontroller->bone; if (pStudioHdr->boneFlags(k) & boneMask) { i = pbonecontroller->inputfield; value = controllers[i]; if (value < 0) value = 0; if (value > 1.0) value = 1.0; value = (1.0 - value) * pbonecontroller->start + value * pbonecontroller->end; switch (pbonecontroller->type & STUDIO_TYPES) { case STUDIO_XR: a0.Init(value * (M_PI / 180.0), 0, 0); AngleQuaternion(a0, q0); QuaternionSM_Hydra(1.0, q0, q[k], q[k]); break; case STUDIO_YR: a0.Init(0, value * (M_PI / 180.0), 0); AngleQuaternion(a0, q0); QuaternionSM_Hydra(1.0, q0, q[k], q[k]); break; case STUDIO_ZR: a0.Init(0, 0, value * (M_PI / 180.0)); AngleQuaternion(a0, q0); QuaternionSM_Hydra(1.0, q0, q[k], q[k]); break; case STUDIO_X: pos[k].x += value; break; case STUDIO_Y: pos[k].y += value; break; case STUDIO_Z: pos[k].z += value; break; } } } } void CalcBoneDerivatives_Hydra(Vector &velocity, AngularImpulse &angVel, const matrix3x4_t &prev, const matrix3x4_t ¤t, float dt) { float scale = 1.0; if (dt > 0) { scale = 1.0 / dt; } Vector endPosition, startPosition, deltaAxis; QAngle endAngles, startAngles; float deltaAngle; MatrixAngles(prev, startAngles, startPosition); MatrixAngles(current, endAngles, endPosition); velocity.x = (endPosition.x - startPosition.x) * scale; velocity.y = (endPosition.y - startPosition.y) * scale; velocity.z = (endPosition.z - startPosition.z) * scale; RotationDeltaAxisAngle(startAngles, endAngles, deltaAxis, deltaAngle); VectorScale(deltaAxis, (deltaAngle * scale), angVel); } void CalcBoneVelocityFromDerivative_Hydra(const QAngle &vecAngles, Vector &velocity, AngularImpulse &angVel, const matrix3x4_t ¤t) { Vector vecLocalVelocity; AngularImpulse LocalAngVel; Quaternion q; float angle; MatrixAngles(current, q, vecLocalVelocity); QuaternionAxisAngle(q, LocalAngVel, angle); LocalAngVel *= angle; matrix3x4_t matAngles; AngleMatrix(vecAngles, matAngles); VectorTransform(vecLocalVelocity, matAngles, velocity); VectorTransform(LocalAngVel, matAngles, angVel); } class CIKSolver { public: //-------- SOLVE TWO LINK INVERSE KINEMATICS ------------- // Author: Ken Perlin // // Given a two link joint from [0,0,0] to end effector position P, // let link lengths be a and b, and let norm |P| = c. Clearly a+b <= c. // // Problem: find a "knee" position Q such that |Q| = a and |P-Q| = b. // // In the case of a point on the x axis R = [c,0,0], there is a // closed form solution S = [d,e,0], where |S| = a and |R-S| = b: // // d2+e2 = a2 -- because |S| = a // (c-d)2+e2 = b2 -- because |R-S| = b // // c2-2cd+d2+e2 = b2 -- combine the two equations // c2-2cd = b2 - a2 // c-2d = (b2-a2)/c // d - c/2 = (a2-b2)/c / 2 // // d = (c + (a2-b2/c) / 2 -- to solve for d and e. // e = sqrt(a2-d2) static float findD(float a, float b, float c) { return (c + (a*a - b*b) / c) / 2; } static float findE(float a, float d) { return sqrt(a*a - d*d); } // This leads to a solution to the more general problem: // // (1) R = Mfwd(P) -- rotate P onto the x axis // (2) Solve for S // (3) Q = Minv(S) -- rotate back again float Mfwd[3][3]; float Minv[3][3]; bool solve(float A, float B, float const P[], float const D[], float Q[]) { float R[3]; defineM(P, D); rot(Minv, P, R); float r = length(R); float d = findD(A, B, r); float e = findE(A, d); float S[3] = { d, e, 0 }; rot(Mfwd, S, Q); return d > (r - B) && d < A; } // If "knee" position Q needs to be as close as possible to some point D, // then choose M such that M(D) is in the y>0 half of the z=0 plane. // // Given that constraint, define the forward and inverse of M as follows: void defineM(float const P[], float const D[]) { float *X = Minv[0], *Y = Minv[1], *Z = Minv[2]; // Minv defines a coordinate system whose x axis contains P, so X = unit(P). int i; for (i = 0; i < 3; i++) X[i] = P[i]; normalize(X); // Its y axis is perpendicular to P, so Y = unit( E - X(E·X) ). float dDOTx = dot(D, X); for (i = 0; i < 3; i++) Y[i] = D[i] - dDOTx * X[i]; normalize(Y); // Its z axis is perpendicular to both X and Y, so Z = X×Y. cross(X, Y, Z); // Mfwd = (Minv)T, since transposing inverts a rotation matrix. for (i = 0; i < 3; i++) { Mfwd[i][0] = Minv[0][i]; Mfwd[i][1] = Minv[1][i]; Mfwd[i][2] = Minv[2][i]; } } //------------ GENERAL VECTOR MATH SUPPORT ----------- static float dot(float const a[], float const b[]) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; } static float length(float const v[]) { return sqrt(dot(v, v)); } static void normalize(float v[]) { float norm = length(v); for (int i = 0; i < 3; i++) v[i] /= norm; } static void cross(float const a[], float const b[], float c[]) { c[0] = a[1] * b[2] - a[2] * b[1]; c[1] = a[2] * b[0] - a[0] * b[2]; c[2] = a[0] * b[1] - a[1] * b[0]; } static void rot(float const M[3][3], float const src[], float dst[]) { for (int i = 0; i < 3; i++) dst[i] = dot(M[i], src); } }; //----------------------------------------------------------------------------- // Purpose: visual debugging code //----------------------------------------------------------------------------- #if 1 inline void debugLine(const Vector& origin, const Vector& dest, int r, int g, int b, bool noDepthTest, float duration) { }; #else extern void drawLine(const Vector &p1, const Vector &p2, int r = 0, int g = 0, int b = 1, bool noDepthTest = true, float duration = 0.1); void debugLine(const Vector& origin, const Vector& dest, int r, int g, int b, bool noDepthTest, float duration) { drawLine(origin, dest, r, g, b, noDepthTest, duration); } #endif //----------------------------------------------------------------------------- // Purpose: for a 2 bone chain, find the IK solution and reset the matrices //----------------------------------------------------------------------------- bool Studio_SolveIK_Hydra(mstudioikchain_t *pikchain, Vector &targetFoot, matrix3x4_t *pBoneToWorld) { if (pikchain->pLink(0)->kneeDir.LengthSqr() > 0.0) { Vector targetKneeDir, targetKneePos; // FIXME: knee length should be as long as the legs Vector tmp = pikchain->pLink(0)->kneeDir; VectorRotate(tmp, pBoneToWorld[pikchain->pLink(0)->bone], targetKneeDir); MatrixPosition(pBoneToWorld[pikchain->pLink(1)->bone], targetKneePos); return Studio_SolveIK_Hydra(pikchain->pLink(0)->bone, pikchain->pLink(1)->bone, pikchain->pLink(2)->bone, targetFoot, targetKneePos, targetKneeDir, pBoneToWorld); } else { return Studio_SolveIK_Hydra(pikchain->pLink(0)->bone, pikchain->pLink(1)->bone, pikchain->pLink(2)->bone, targetFoot, pBoneToWorld); } } #define KNEEMAX_EPSILON 0.9998 // (0.9998 is about 1 degree) //----------------------------------------------------------------------------- // Purpose: Solve Knee position for a known hip and foot location, but no specific knee direction preference //----------------------------------------------------------------------------- bool Studio_SolveIK_Hydra(int iThigh, int iKnee, int iFoot, Vector &targetFoot, matrix3x4_t *pBoneToWorld) { Vector worldFoot, worldKnee, worldThigh; MatrixPosition(pBoneToWorld[iThigh], worldThigh); MatrixPosition(pBoneToWorld[iKnee], worldKnee); MatrixPosition(pBoneToWorld[iFoot], worldFoot); //debugLine( worldThigh, worldKnee, 0, 0, 255, true, 0 ); //debugLine( worldKnee, worldFoot, 0, 0, 255, true, 0 ); Vector ikFoot, ikKnee; ikFoot = targetFoot - worldThigh; ikKnee = worldKnee - worldThigh; float l1 = (worldKnee - worldThigh).Length(); float l2 = (worldFoot - worldKnee).Length(); float l3 = (worldFoot - worldThigh).Length(); // leg too straight to figure out knee? if (l3 > (l1 + l2) * KNEEMAX_EPSILON) { return false; } Vector ikHalf = (worldFoot - worldThigh) * (l1 / l3); // FIXME: what to do when the knee completely straight? Vector ikKneeDir = ikKnee - ikHalf; VectorNormalize(ikKneeDir); return Studio_SolveIK_Hydra(iThigh, iKnee, iFoot, targetFoot, worldKnee, ikKneeDir, pBoneToWorld); } //----------------------------------------------------------------------------- // Purpose: Realign the matrix so that its X axis points along the desired axis. //----------------------------------------------------------------------------- void Studio_AlignIKMatrix_Hydra(matrix3x4_t &mMat, const Vector &vAlignTo) { Vector tmp1, tmp2, tmp3; // Column 0 (X) becomes the vector. tmp1 = vAlignTo; VectorNormalize(tmp1); MatrixSetColumn(tmp1, 0, mMat); // Column 1 (Y) is the cross of the vector and column 2 (Z). MatrixGetColumn(mMat, 2, tmp3); tmp2 = tmp3.Cross(tmp1); VectorNormalize(tmp2); // FIXME: check for X being too near to Z MatrixSetColumn(tmp2, 1, mMat); // Column 2 (Z) is the cross of columns 0 (X) and 1 (Y). tmp3 = tmp1.Cross(tmp2); MatrixSetColumn(tmp3, 2, mMat); } //----------------------------------------------------------------------------- // Purpose: Solve Knee position for a known hip and foot location, and a known knee direction //----------------------------------------------------------------------------- bool Studio_SolveIK_Hydra(int iThigh, int iKnee, int iFoot, Vector &targetFoot, Vector &targetKneePos, Vector &targetKneeDir, matrix3x4_t *pBoneToWorld) { Vector worldFoot, worldKnee, worldThigh; MatrixPosition(pBoneToWorld[iThigh], worldThigh); MatrixPosition(pBoneToWorld[iKnee], worldKnee); MatrixPosition(pBoneToWorld[iFoot], worldFoot); //debugLine( worldThigh, worldKnee, 0, 0, 255, true, 0 ); //debugLine( worldThigh, worldThigh + targetKneeDir, 0, 0, 255, true, 0 ); // debugLine( worldKnee, targetKnee, 0, 0, 255, true, 0 ); Vector ikFoot, ikTargetKnee, ikKnee; ikFoot = targetFoot - worldThigh; ikKnee = targetKneePos - worldThigh; float l1 = (worldKnee - worldThigh).Length(); float l2 = (worldFoot - worldKnee).Length(); // exaggerate knee targets for legs that are nearly straight // FIXME: should be configurable, and the ikKnee should be from the original animation, not modifed float d = (targetFoot - worldThigh).Length() - min(l1, l2); d = max(l1 + l2, d); // FIXME: too short knee directions cause trouble d = d * 100; ikTargetKnee = ikKnee + targetKneeDir * d; // debugLine( worldKnee, worldThigh + ikTargetKnee, 0, 0, 255, true, 0 ); int color[3] = { 0, 255, 0 }; // too far away? (0.9998 is about 1 degree) if (ikFoot.Length() > (l1 + l2) * KNEEMAX_EPSILON) { VectorNormalize(ikFoot); VectorScale(ikFoot, (l1 + l2) * KNEEMAX_EPSILON, ikFoot); color[0] = 255; color[1] = 0; color[2] = 0; } // too close? // limit distance to about an 80 degree knee bend float minDist = max(fabs(l1 - l2) * 1.15, min(l1, l2) * 0.15); if (ikFoot.Length() < minDist) { // too close to get an accurate vector, just use original vector ikFoot = (worldFoot - worldThigh); VectorNormalize(ikFoot); VectorScale(ikFoot, minDist, ikFoot); } CIKSolver ik; if (ik.solve(l1, l2, ikFoot.Base(), ikTargetKnee.Base(), ikKnee.Base())) { matrix3x4_t& mWorldThigh = pBoneToWorld[iThigh]; matrix3x4_t& mWorldKnee = pBoneToWorld[iKnee]; matrix3x4_t& mWorldFoot = pBoneToWorld[iFoot]; //debugLine( worldThigh, ikKnee + worldThigh, 255, 0, 0, true, 0 ); //debugLine( ikKnee + worldThigh, ikFoot + worldThigh, 255, 0, 0, true,0 ); // debugLine( worldThigh, ikKnee + worldThigh, color[0], color[1], color[2], true, 0 ); // debugLine( ikKnee + worldThigh, ikFoot + worldThigh, color[0], color[1], color[2], true,0 ); // build transformation matrix for thigh Studio_AlignIKMatrix_Hydra(mWorldThigh, ikKnee); Studio_AlignIKMatrix_Hydra(mWorldKnee, ikFoot - ikKnee); mWorldKnee[0][3] = ikKnee.x + worldThigh.x; mWorldKnee[1][3] = ikKnee.y + worldThigh.y; mWorldKnee[2][3] = ikKnee.z + worldThigh.z; mWorldFoot[0][3] = ikFoot.x + worldThigh.x; mWorldFoot[1][3] = ikFoot.y + worldThigh.y; mWorldFoot[2][3] = ikFoot.z + worldThigh.z; return true; } else { /* debugLine( worldThigh, worldThigh + ikKnee, 255, 0, 0, true, 0 ); debugLine( worldThigh + ikKnee, worldThigh + ikFoot, 255, 0, 0, true, 0 ); debugLine( worldThigh + ikFoot, worldThigh, 255, 0, 0, true, 0 ); debugLine( worldThigh + ikKnee, worldThigh + ikTargetKnee, 255, 0, 0, true, 0 ); */ return false; } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- float Studio_IKRuleWeight_Hydra(mstudioikrule_t &ikRule, const mstudioanimdesc_t *panim, float flCycle, int &iFrame, float &fraq) { if (ikRule.end > 1.0f && flCycle < ikRule.start) { flCycle = flCycle + 1.0f; } float value = 0.0f; fraq = (panim->numframes - 1) * (flCycle - ikRule.start) + ikRule.iStart; iFrame = (int)fraq; fraq = fraq - iFrame; if (flCycle < ikRule.start) { iFrame = ikRule.iStart; fraq = 0.0f; return 0.0f; } else if (flCycle < ikRule.peak) { value = (flCycle - ikRule.start) / (ikRule.peak - ikRule.start); } else if (flCycle < ikRule.tail) { return 1.0f; } else if (flCycle < ikRule.end) { value = 1.0f - ((flCycle - ikRule.tail) / (ikRule.end - ikRule.tail)); } else { fraq = (panim->numframes - 1) * (ikRule.end - ikRule.start) + ikRule.iStart; iFrame = (int)fraq; fraq = fraq - iFrame; } return SimpleSpline(value); } float Studio_IKRuleWeight_Hydra(ikcontextikrule_t_Hydra &ikRule, float flCycle) { if (ikRule.end > 1.0f && flCycle < ikRule.start) { flCycle = flCycle + 1.0f; } float value = 0.0f; if (flCycle < ikRule.start) { return 0.0f; } else if (flCycle < ikRule.peak) { value = (flCycle - ikRule.start) / (ikRule.peak - ikRule.start); } else if (flCycle < ikRule.tail) { return 1.0f; } else if (flCycle < ikRule.end) { value = 1.0f - ((flCycle - ikRule.tail) / (ikRule.end - ikRule.tail)); } return 3.0f * value * value - 2.0f * value * value * value; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool Studio_IKShouldLatch(ikcontextikrule_t_Hydra &ikRule, float flCycle) { if (ikRule.end > 1.0f && flCycle < ikRule.start) { flCycle = flCycle + 1.0f; } if (flCycle < ikRule.peak) { return false; } else if (flCycle < ikRule.end) { return true; } return false; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- float Studio_IKTail(ikcontextikrule_t_Hydra &ikRule, float flCycle) { if (ikRule.end > 1.0f && flCycle < ikRule.start) { flCycle = flCycle + 1.0f; } if (flCycle <= ikRule.tail) { return 0.0f; } else if (flCycle < ikRule.end) { return ((flCycle - ikRule.tail) / (ikRule.end - ikRule.tail)); } return 0.0; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool Studio_IKAnimationError_Hydra(const CStudioHdr *pStudioHdr, mstudioikrule_t *pRule, const mstudioanimdesc_t *panim, float flCycle, Vector &pos, Quaternion &q, float &flWeight) { float fraq; int iFrame; flWeight = Studio_IKRuleWeight_Hydra(*pRule, panim, flCycle, iFrame, fraq); Assert(fraq >= 0.0 && fraq < 1.0); Assert(flWeight >= 0.0f && flWeight <= 1.0f); // This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up flWeight = clamp(flWeight, 0.0f, 1.0f); if (pRule->type != IK_GROUND && flWeight < 0.0001) return false; mstudioikerror_t *pError = pRule->pError(iFrame); if (pError != NULL) { if (fraq < 0.001) { q = pError[0].q; pos = pError[0].pos; } else { QuaternionBlend(pError[0].q, pError[1].q, fraq, q); pos = pError[0].pos * (1.0f - fraq) + pError[1].pos * fraq; } return true; } mstudiocompressedikerror_t *pCompressed = pRule->pCompressedError(); if (pCompressed != NULL) { CalcDecompressedAnimation(pCompressed, iFrame - pRule->iStart, fraq, pos, q); return true; } // no data, disable IK rule Assert(0); flWeight = 0.0f; return false; } //----------------------------------------------------------------------------- // Purpose: For a specific sequence:rule, find where it starts, stops, and what // the estimated offset from the connection point is. // return true if the rule is within bounds. //----------------------------------------------------------------------------- bool Studio_IKSequenceError(const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, float flCycle, int iRule, const float poseParameter[], mstudioanimdesc_t *panim[4], float weight[4], ikcontextikrule_t_Hydra &ikRule) { int i; memset(&ikRule, 0, sizeof(ikRule)); ikRule.start = ikRule.peak = ikRule.tail = ikRule.end = 0; mstudioikrule_t *prevRule = NULL; // find overall influence for (i = 0; i < 4; i++) { if (weight[i]) { if (iRule >= panim[i]->numikrules || panim[i]->numikrules != panim[0]->numikrules) { Assert(0); return false; } mstudioikrule_t *pRule = panim[i]->pIKRule(iRule); if (pRule == NULL) return false; float dt = 0.0; if (prevRule != NULL) { if (pRule->start - prevRule->start > 0.5) { dt = -1.0; } else if (pRule->start - prevRule->start < -0.5) { dt = 1.0; } } else { prevRule = pRule; } ikRule.start += (pRule->start + dt) * weight[i]; ikRule.peak += (pRule->peak + dt) * weight[i]; ikRule.tail += (pRule->tail + dt) * weight[i]; ikRule.end += (pRule->end + dt) * weight[i]; } } if (ikRule.start > 1.0) { ikRule.start -= 1.0; ikRule.peak -= 1.0; ikRule.tail -= 1.0; ikRule.end -= 1.0; } else if (ikRule.start < 0.0) { ikRule.start += 1.0; ikRule.peak += 1.0; ikRule.tail += 1.0; ikRule.end += 1.0; } ikRule.flWeight = Studio_IKRuleWeight_Hydra(ikRule, flCycle); if (ikRule.flWeight <= 0.001f) { // go ahead and allow IK_GROUND rules a virtual looping section if (panim[0]->pIKRule(iRule) == NULL) return false; if ((panim[0]->flags & STUDIO_LOOPING) && panim[0]->pIKRule(iRule)->type == IK_GROUND && ikRule.end - ikRule.start > 0.75) { ikRule.flWeight = 0.001; flCycle = ikRule.end - 0.001; } else { return false; } } Assert(ikRule.flWeight > 0.0f); ikRule.pos.Init(); ikRule.q.Init(); // find target error float total = 0.0f; for (i = 0; i < 4; i++) { if (weight[i]) { Vector pos1; Quaternion q1; float w; mstudioikrule_t *pRule = panim[i]->pIKRule(iRule); if (pRule == NULL) return false; ikRule.chain = pRule->chain; // FIXME: this is anim local ikRule.bone = pRule->bone; // FIXME: this is anim local ikRule.type = pRule->type; ikRule.slot = pRule->slot; ikRule.height += pRule->height * weight[i]; ikRule.floor += pRule->floor * weight[i]; ikRule.radius += pRule->radius * weight[i]; ikRule.drop += pRule->drop * weight[i]; ikRule.top += pRule->top * weight[i]; // keep track of tail condition ikRule.release += Studio_IKTail(ikRule, flCycle) * weight[i]; // only check rules with error values switch (ikRule.type) { case IK_SELF: case IK_WORLD: case IK_GROUND: case IK_ATTACHMENT: { int bResult = Studio_IKAnimationError_Hydra(pStudioHdr, pRule, panim[i], flCycle, pos1, q1, w); if (bResult) { ikRule.pos = ikRule.pos + pos1 * weight[i]; QuaternionAccumulate_Hydra(ikRule.q, weight[i], q1, ikRule.q); total += weight[i]; } } break; default: total += weight[i]; break; } ikRule.latched = Studio_IKShouldLatch(ikRule, flCycle) * ikRule.flWeight; if (ikRule.type == IK_ATTACHMENT) { ikRule.szLabel = pRule->pszAttachment(); } } } if (total <= 0.0001f) { return false; } if (total < 0.999f) { VectorScale(ikRule.pos, 1.0f / total, ikRule.pos); QuaternionScale(ikRule.q, 1.0f / total, ikRule.q); } if (ikRule.type == IK_SELF && ikRule.bone != -1) { // FIXME: this is anim local, not seq local! ikRule.bone = pStudioHdr->RemapSeqBone(iSequence, ikRule.bone); if (ikRule.bone == -1) return false; } QuaternionNormalize(ikRule.q); return true; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- CIKContext_Hydra::CIKContext_Hydra() { m_target.EnsureCapacity(12); // FIXME: this sucks, shouldn't it be grown? m_iFramecounter = -1; m_pStudioHdr = NULL; m_flTime = -1.0f; m_target.SetSize(0); } void CIKContext_Hydra::Init(const CStudioHdr *pStudioHdr, const QAngle &angles, const Vector &pos, float flTime, int iFramecounter, int boneMask) { m_pStudioHdr = pStudioHdr; m_ikChainRule.RemoveAll(); // m_numikrules = 0; if (pStudioHdr->numikchains()) { m_ikChainRule.SetSize(pStudioHdr->numikchains()); // FIXME: Brutal hackery to prevent a crash if (m_target.Count() == 0) { m_target.SetSize(12); memset(m_target.Base(), 0, sizeof(m_target[0])*m_target.Count()); ClearTargets(); } } else { m_target.SetSize(0); } AngleMatrix(angles, pos, m_rootxform); m_iFramecounter = iFramecounter; m_flTime = flTime; m_boneMask = boneMask; } void CIKContext_Hydra::AddDependencies(mstudioseqdesc_t &seqdesc, int iSequence, float flCycle, const float poseParameters[], float flWeight) { int i; if (m_pStudioHdr->numikchains() == 0) return; if (seqdesc.numikrules == 0) return; ikcontextikrule_t_Hydra ikrule; Assert(flWeight >= 0.0f && flWeight <= 1.0f); // This shouldn't be necessary, but the Assert should help us catch whoever is screwing this up flWeight = clamp(flWeight, 0.0f, 1.0f); // unify this if (seqdesc.flags & STUDIO_REALTIME) { float cps = Studio_CPS_Hydra(m_pStudioHdr, seqdesc, iSequence, poseParameters); flCycle = m_flTime * cps; flCycle = flCycle - (int)flCycle; } else if (flCycle < 0 || flCycle >= 1) { if (seqdesc.flags & STUDIO_LOOPING) { flCycle = flCycle - (int)flCycle; if (flCycle < 0) flCycle += 1; } else { flCycle = max(0.0, min(flCycle, 0.9999)); } } mstudioanimdesc_t *panim[4]; float weight[4]; Studio_SeqAnims_Hydra(m_pStudioHdr, seqdesc, iSequence, poseParameters, panim, weight); // FIXME: add proper number of rules!!! for (i = 0; i < seqdesc.numikrules; i++) { if (!Studio_IKSequenceError(m_pStudioHdr, seqdesc, iSequence, flCycle, i, poseParameters, panim, weight, ikrule)) continue; // don't add rule if the bone isn't going to be calculated int bone = m_pStudioHdr->pIKChain(ikrule.chain)->pLink(2)->bone; if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask)) continue; // or if its relative bone isn't going to be calculated if (ikrule.bone >= 0 && !(m_pStudioHdr->boneFlags(ikrule.bone) & m_boneMask)) continue; // FIXME: Brutal hackery to prevent a crash if (m_target.Count() == 0) { m_target.SetSize(12); memset(m_target.Base(), 0, sizeof(m_target[0])*m_target.Count()); ClearTargets(); } ikrule.flRuleWeight = flWeight; if (ikrule.flRuleWeight * ikrule.flWeight > 0.999) { if (ikrule.type != IK_UNLATCH) { // clear out chain if rule is 100% m_ikChainRule.Element(ikrule.chain).RemoveAll(); if (ikrule.type == IK_RELEASE) { continue; } } } int nIndex = m_ikChainRule.Element(ikrule.chain).AddToTail(); m_ikChainRule.Element(ikrule.chain).Element(nIndex) = ikrule; } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext_Hydra::AddAutoplayLocks(Vector pos[], Quaternion q[]) { // skip all array access if no autoplay locks. if (m_pStudioHdr->GetNumIKAutoplayLocks() == 0) { return; } matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList_Hydra boneComputed; int ikOffset = m_ikLock.AddMultipleToTail(m_pStudioHdr->GetNumIKAutoplayLocks()); memset(&m_ikLock[ikOffset], 0, sizeof(ikcontextikrule_t_Hydra)*m_pStudioHdr->GetNumIKAutoplayLocks()); for (int i = 0; i < m_pStudioHdr->GetNumIKAutoplayLocks(); i++) { const mstudioiklock_t &lock = ((CStudioHdr *)m_pStudioHdr)->pIKAutoplayLock(i); mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(lock.chain); int bone = pchain->pLink(2)->bone; // don't bother with iklock if the bone isn't going to be calculated if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask)) continue; // eval current ik'd bone BuildBoneChain(pos, q, bone, boneToWorld, boneComputed); ikcontextikrule_t_Hydra &ikrule = m_ikLock[i + ikOffset]; ikrule.chain = lock.chain; ikrule.slot = i; ikrule.type = IK_WORLD; MatrixAngles(boneToWorld[bone], ikrule.q, ikrule.pos); // save off current knee direction if (pchain->pLink(0)->kneeDir.LengthSqr() > 0.0) { Vector tmp = pchain->pLink(0)->kneeDir; VectorRotate(pchain->pLink(0)->kneeDir, boneToWorld[pchain->pLink(0)->bone], ikrule.kneeDir); MatrixPosition(boneToWorld[pchain->pLink(1)->bone], ikrule.kneePos); } else { ikrule.kneeDir.Init(); } } g_MatrixPool.Free(boneToWorld); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext_Hydra::AddSequenceLocks(mstudioseqdesc_t &seqdesc, Vector pos[], Quaternion q[]) { if (m_pStudioHdr->numikchains() == 0) { return; } if (seqdesc.numiklocks == 0) { return; } matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList_Hydra boneComputed; int ikOffset = m_ikLock.AddMultipleToTail(seqdesc.numiklocks); memset(&m_ikLock[ikOffset], 0, sizeof(ikcontextikrule_t_Hydra) * seqdesc.numiklocks); for (int i = 0; i < seqdesc.numiklocks; i++) { mstudioiklock_t *plock = seqdesc.pIKLock(i); mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(plock->chain); int bone = pchain->pLink(2)->bone; // don't bother with iklock if the bone isn't going to be calculated if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask)) continue; // eval current ik'd bone BuildBoneChain(pos, q, bone, boneToWorld, boneComputed); ikcontextikrule_t_Hydra &ikrule = m_ikLock[i + ikOffset]; ikrule.chain = i; ikrule.slot = i; ikrule.type = IK_WORLD; MatrixAngles(boneToWorld[bone], ikrule.q, ikrule.pos); // save off current knee direction if (pchain->pLink(0)->kneeDir.LengthSqr() > 0.0) { VectorRotate(pchain->pLink(0)->kneeDir, boneToWorld[pchain->pLink(0)->bone], ikrule.kneeDir); } else { ikrule.kneeDir.Init(); } } g_MatrixPool.Free(boneToWorld); } //----------------------------------------------------------------------------- // Purpose: build boneToWorld transforms for a specific bone //----------------------------------------------------------------------------- void CIKContext_Hydra::BuildBoneChain( const Vector pos[], const Quaternion q[], int iBone, matrix3x4_t *pBoneToWorld, CBoneBitList_Hydra &boneComputed) { Assert(m_pStudioHdr->boneFlags(iBone) & m_boneMask); ::BuildBoneChain_Hydra(m_pStudioHdr, m_rootxform, pos, q, iBone, pBoneToWorld, boneComputed); } //----------------------------------------------------------------------------- // Purpose: build boneToWorld transforms for a specific bone //----------------------------------------------------------------------------- void BuildBoneChain_Hydra( const CStudioHdr *pStudioHdr, const matrix3x4_t &rootxform, const Vector pos[], const Quaternion q[], int iBone, matrix3x4_t *pBoneToWorld, CBoneBitList_Hydra &boneComputed) { if (boneComputed.IsBoneMarked(iBone)) return; matrix3x4_t bonematrix; QuaternionMatrix(q[iBone], pos[iBone], bonematrix); int parent = pStudioHdr->boneParent(iBone); if (parent == -1) { ConcatTransforms(rootxform, bonematrix, pBoneToWorld[iBone]); } else { // evil recursive!!! BuildBoneChain_Hydra(pStudioHdr, rootxform, pos, q, parent, pBoneToWorld, boneComputed); ConcatTransforms(pBoneToWorld[parent], bonematrix, pBoneToWorld[iBone]); } boneComputed.MarkBone(iBone); } //----------------------------------------------------------------------------- // Purpose: turn a specific bones boneToWorld transform into a pos and q in parents bonespace //----------------------------------------------------------------------------- void SolveBone_Hydra( const CStudioHdr *pStudioHdr, int iBone, matrix3x4_t *pBoneToWorld, Vector pos[], Quaternion q[] ) { int iParent = pStudioHdr->boneParent(iBone); matrix3x4_t worldToBone; MatrixInvert(pBoneToWorld[iParent], worldToBone); matrix3x4_t local; ConcatTransforms(worldToBone, pBoneToWorld[iBone], local); MatrixAngles(local, q[iBone], pos[iBone]); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKTarget_Hydra::SetOwner(int entindex, const Vector &pos, const QAngle &angles) { latched.owner = entindex; latched.absOrigin = pos; latched.absAngles = angles; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKTarget_Hydra::ClearOwner(void) { latched.owner = -1; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- int CIKTarget_Hydra::GetOwner(void) { return latched.owner; } //----------------------------------------------------------------------------- // Purpose: update the latched IK values that are in a moving frame of reference //----------------------------------------------------------------------------- void CIKTarget_Hydra::UpdateOwner(int entindex, const Vector &pos, const QAngle &angles) { if (pos == latched.absOrigin && angles == latched.absAngles) return; matrix3x4_t in, out; AngleMatrix(angles, pos, in); AngleIMatrix(latched.absAngles, latched.absOrigin, out); matrix3x4_t tmp1, tmp2; QuaternionMatrix(latched.q, latched.pos, tmp1); ConcatTransforms(out, tmp1, tmp2); ConcatTransforms(in, tmp2, tmp1); MatrixAngles(tmp1, latched.q, latched.pos); } //----------------------------------------------------------------------------- // Purpose: sets the ground position of an ik target //----------------------------------------------------------------------------- void CIKTarget_Hydra::SetPos(const Vector &pos) { est.pos = pos; } //----------------------------------------------------------------------------- // Purpose: sets the ground "identity" orientation of an ik target //----------------------------------------------------------------------------- void CIKTarget_Hydra::SetAngles(const QAngle &angles) { AngleQuaternion(angles, est.q); } //----------------------------------------------------------------------------- // Purpose: sets the ground "identity" orientation of an ik target //----------------------------------------------------------------------------- void CIKTarget_Hydra::SetQuaternion(const Quaternion &q) { est.q = q; } //----------------------------------------------------------------------------- // Purpose: calculates a ground "identity" orientation based on the surface // normal of the ground and the desired ground identity orientation //----------------------------------------------------------------------------- void CIKTarget_Hydra::SetNormal(const Vector &normal) { // recalculate foot angle based on slope of surface matrix3x4_t m1; Vector forward, right; QuaternionMatrix(est.q, m1); MatrixGetColumn(m1, 1, right); forward = CrossProduct(right, normal); right = CrossProduct(normal, forward); MatrixSetColumn(forward, 0, m1); MatrixSetColumn(right, 1, m1); MatrixSetColumn(normal, 2, m1); QAngle a1; Vector p1; MatrixAngles(m1, est.q, p1); } //----------------------------------------------------------------------------- // Purpose: estimates the ground impact at the center location assuming a the edge of // an Z axis aligned disc collided with it the surface. //----------------------------------------------------------------------------- void CIKTarget_Hydra::SetPosWithNormalOffset(const Vector &pos, const Vector &normal) { // assume it's a disc edge intersecting with the floor, so try to estimate the z location of the center est.pos = pos; if (normal.z > 0.9999) { return; } // clamp at 45 degrees else if (normal.z > 0.707) { // tan == sin / cos float tan = sqrt(1 - normal.z * normal.z) / normal.z; est.pos.z = est.pos.z - est.radius * tan; } else { est.pos.z = est.pos.z - est.radius; } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKTarget_Hydra::SetOnWorld(bool bOnWorld) { est.onWorld = bOnWorld; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool CIKTarget_Hydra::IsActive() { return (est.flWeight > 0.0f); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKTarget_Hydra::IKFailed(void) { latched.deltaPos.Init(); latched.deltaQ.Init(); latched.pos = ideal.pos; latched.q = ideal.q; est.latched = 0.0; est.flWeight = 0.0; est.onWorld = false; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKTarget_Hydra::MoveReferenceFrame(Vector &deltaPos, QAngle &deltaAngles) { est.pos -= deltaPos; latched.pos -= deltaPos; offset.pos -= deltaPos; ideal.pos -= deltaPos; } //----------------------------------------------------------------------------- // Purpose: Invalidate any IK locks. //----------------------------------------------------------------------------- void CIKContext_Hydra::ClearTargets(void) { int i; for (i = 0; i < m_target.Count(); i++) { m_target[i].latched.iFramecounter = -9999; } } //----------------------------------------------------------------------------- // Purpose: Run through the rules that survived and turn a specific bones boneToWorld // transform into a pos and q in parents bonespace //----------------------------------------------------------------------------- void CIKContext_Hydra::UpdateTargets(Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList_Hydra &boneComputed) { int i, j; for (i = 0; i < m_target.Count(); i++) { m_target[i].est.flWeight = 0.0f; m_target[i].est.latched = 1.0f; m_target[i].est.release = 1.0f; m_target[i].est.height = 0.0f; m_target[i].est.floor = 0.0f; m_target[i].est.radius = 0.0f; m_target[i].offset.pos.Init(); m_target[i].offset.q.Init(); } AutoIKRelease(); for (j = 0; j < m_ikChainRule.Count(); j++) { for (i = 0; i < m_ikChainRule.Element(j).Count(); i++) { ikcontextikrule_t_Hydra *pRule = &m_ikChainRule.Element(j).Element(i); // ikchainresult_t_Hydra *pChainRule = &chainRule[ m_ikRule[i].chain ]; switch (pRule->type) { case IK_ATTACHMENT: case IK_GROUND: // case IK_SELF: { matrix3x4_t footTarget; CIKTarget_Hydra *pTarget = &m_target[pRule->slot]; pTarget->chain = pRule->chain; pTarget->type = pRule->type; if (pRule->type == IK_ATTACHMENT) { pTarget->offset.pAttachmentName = pRule->szLabel; } else { pTarget->offset.pAttachmentName = NULL; } if (pRule->flRuleWeight == 1.0f || pTarget->est.flWeight == 0.0f) { pTarget->offset.q = pRule->q; pTarget->offset.pos = pRule->pos; pTarget->est.height = pRule->height; pTarget->est.floor = pRule->floor; pTarget->est.radius = pRule->radius; pTarget->est.latched = pRule->latched * pRule->flRuleWeight; pTarget->est.release = pRule->release; pTarget->est.flWeight = pRule->flWeight * pRule->flRuleWeight; } else { QuaternionSlerp(pTarget->offset.q, pRule->q, pRule->flRuleWeight, pTarget->offset.q); pTarget->offset.pos = Lerp(pRule->flRuleWeight, pTarget->offset.pos, pRule->pos); pTarget->est.height = Lerp(pRule->flRuleWeight, pTarget->est.height, pRule->height); pTarget->est.floor = Lerp(pRule->flRuleWeight, pTarget->est.floor, pRule->floor); pTarget->est.radius = Lerp(pRule->flRuleWeight, pTarget->est.radius, pRule->radius); //pTarget->est.latched = Lerp( pRule->flRuleWeight, pTarget->est.latched, pRule->latched ); pTarget->est.latched = min(pTarget->est.latched, pRule->latched); pTarget->est.release = Lerp(pRule->flRuleWeight, pTarget->est.release, pRule->release); pTarget->est.flWeight = Lerp(pRule->flRuleWeight, pTarget->est.flWeight, pRule->flWeight); } if (pRule->type == IK_GROUND) { pTarget->latched.deltaPos.z = 0; pTarget->est.pos.z = pTarget->est.floor + m_rootxform[2][3]; } } break; case IK_UNLATCH: { CIKTarget_Hydra *pTarget = &m_target[pRule->slot]; if (pRule->latched > 0.0) pTarget->est.latched = 0.0; else pTarget->est.latched = min(pTarget->est.latched, 1.0f - pRule->flWeight); } break; case IK_RELEASE: { CIKTarget_Hydra *pTarget = &m_target[pRule->slot]; if (pRule->latched > 0.0) pTarget->est.latched = 0.0; else pTarget->est.latched = min(pTarget->est.latched, 1.0f - pRule->flWeight); pTarget->est.flWeight = (pTarget->est.flWeight) * (1 - pRule->flWeight * pRule->flRuleWeight); } break; } } } for (i = 0; i < m_target.Count(); i++) { CIKTarget_Hydra *pTarget = &m_target[i]; if (pTarget->est.flWeight > 0.0) { mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(pTarget->chain); // ikchainresult_t_Hydra *pChainRule = &chainRule[ i ]; int bone = pchain->pLink(2)->bone; // eval current ik'd bone BuildBoneChain(pos, q, bone, boneToWorld, boneComputed); // xform IK target error into world space matrix3x4_t local; matrix3x4_t worldFootpad; QuaternionMatrix(pTarget->offset.q, pTarget->offset.pos, local); MatrixInvert(local, local); ConcatTransforms(boneToWorld[bone], local, worldFootpad); if (pTarget->est.latched == 1.0) { pTarget->latched.bNeedsLatch = true; } else { pTarget->latched.bNeedsLatch = false; } // disable latched position if it looks invalid if (m_iFramecounter < 0 || pTarget->latched.iFramecounter < m_iFramecounter - 1 || pTarget->latched.iFramecounter > m_iFramecounter) { pTarget->latched.bHasLatch = false; pTarget->latched.influence = 0.0; } pTarget->latched.iFramecounter = m_iFramecounter; // find ideal contact position MatrixAngles(worldFootpad, pTarget->ideal.q, pTarget->ideal.pos); pTarget->est.q = pTarget->ideal.q; pTarget->est.pos = pTarget->ideal.pos; float latched = pTarget->est.latched; if (pTarget->latched.bHasLatch) { if (pTarget->est.latched == 1.0) { // keep track of latch position error from ideal contact position pTarget->latched.deltaPos = pTarget->latched.pos - pTarget->est.pos; QuaternionSM_Hydra(-1, pTarget->est.q, pTarget->latched.q, pTarget->latched.deltaQ); pTarget->est.q = pTarget->latched.q; pTarget->est.pos = pTarget->latched.pos; } else if (pTarget->est.latched > 0.0) { // ramp out latch differences during decay phase of rule if (latched > 0 && latched < pTarget->latched.influence) { // latching has decreased float dt = pTarget->latched.influence - latched; if (pTarget->latched.influence > 0.0) dt = dt / pTarget->latched.influence; VectorScale(pTarget->latched.deltaPos, (1 - dt), pTarget->latched.deltaPos); QuaternionScale(pTarget->latched.deltaQ, (1 - dt), pTarget->latched.deltaQ); } // move ideal contact position by latched error factor pTarget->est.pos = pTarget->est.pos + pTarget->latched.deltaPos; QuaternionMA_Hydra(pTarget->est.q, 1, pTarget->latched.deltaQ, pTarget->est.q); pTarget->latched.q = pTarget->est.q; pTarget->latched.pos = pTarget->est.pos; } else { pTarget->latched.bHasLatch = false; pTarget->latched.q = pTarget->est.q; pTarget->latched.pos = pTarget->est.pos; pTarget->latched.deltaPos.Init(); pTarget->latched.deltaQ.Init(); } pTarget->latched.influence = latched; } // check for illegal requests Vector p1, p2, p3; MatrixPosition(boneToWorld[pchain->pLink(0)->bone], p1); // hip MatrixPosition(boneToWorld[pchain->pLink(1)->bone], p2); // knee MatrixPosition(boneToWorld[pchain->pLink(2)->bone], p3); // foot float d1 = (p2 - p1).Length(); float d2 = (p3 - p2).Length(); if (pTarget->latched.bHasLatch) { //float d3 = (p3 - p1).Length(); float d4 = (p3 + pTarget->latched.deltaPos - p1).Length(); // unstick feet when distance is too great if ((d4 < fabs(d1 - d2) || d4 * 0.95 > d1 + d2) && pTarget->est.latched > 0.2) { pTarget->error.flTime = m_flTime; } // unstick feet when angle is too great if (pTarget->est.latched > 0.2) { float d = fabs(pTarget->latched.deltaQ.w) * 2.0f - 1.0f; // QuaternionDotProduct( pTarget->latched.q, pTarget->est.q ); // FIXME: cos(45), make property of chain if (d < 0.707) { pTarget->error.flTime = m_flTime; } } } Vector dt = pTarget->est.pos - p1; pTarget->trace.hipToFoot = VectorNormalize(dt); pTarget->trace.hipToKnee = d1; pTarget->trace.kneeToFoot = d2; pTarget->trace.hip = p1; pTarget->trace.knee = p2; pTarget->trace.closest = p1 + dt * (fabs(d1 - d2) * 1.01); pTarget->trace.farthest = p1 + dt * (d1 + d2) * 0.99; pTarget->trace.lowest = p1 + Vector(0, 0, -1) * (d1 + d2) * 0.99; // pTarget->trace.endpos = pTarget->est.pos; } } } //----------------------------------------------------------------------------- // Purpose: insert release rules if the ik rules were in error //----------------------------------------------------------------------------- void CIKContext_Hydra::AutoIKRelease(void) { int i; for (i = 0; i < m_target.Count(); i++) { CIKTarget_Hydra *pTarget = &m_target[i]; float dt = m_flTime - pTarget->error.flTime; if (pTarget->error.bInError || dt < 0.5) { if (!pTarget->error.bInError) { pTarget->error.ramp = 0.0; pTarget->error.flErrorTime = pTarget->error.flTime; pTarget->error.bInError = true; } float ft = m_flTime - pTarget->error.flErrorTime; if (dt < 0.25) { pTarget->error.ramp = min(pTarget->error.ramp + ft * 4.0, 1.0); } else { pTarget->error.ramp = max(pTarget->error.ramp - ft * 4.0, 0.0); } if (pTarget->error.ramp > 0.0) { ikcontextikrule_t_Hydra ikrule; ikrule.chain = pTarget->chain; ikrule.bone = 0; ikrule.type = IK_RELEASE; ikrule.slot = i; ikrule.flWeight = SimpleSpline(pTarget->error.ramp); ikrule.flRuleWeight = 1.0; ikrule.latched = dt < 0.25 ? 0.0 : ikrule.flWeight; // don't bother with AutoIKRelease if the bone isn't going to be calculated // this code is crashing for some unknown reason. if (pTarget->chain >= 0 && pTarget->chain < m_pStudioHdr->numikchains()) { mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(pTarget->chain); if (pchain != NULL) { int bone = pchain->pLink(2)->bone; if (bone >= 0 && bone < m_pStudioHdr->numbones()) { mstudiobone_t *pBone = m_pStudioHdr->pBone(bone); if (pBone != NULL) { if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask)) { pTarget->error.bInError = false; continue; } /* char buf[256]; sprintf( buf, "dt %.4f ft %.4f weight %.4f latched %.4f\n", dt, ft, ikrule.flWeight, ikrule.latched ); OutputDebugString( buf ); */ int nIndex = m_ikChainRule.Element(ikrule.chain).AddToTail(); m_ikChainRule.Element(ikrule.chain).Element(nIndex) = ikrule; } else { //DevWarning(1, "AutoIKRelease (%s) got a NULL pBone %d\n", m_pStudioHdr->name(), bone); } } else { //DevWarning(1, "AutoIKRelease (%s) got an out of range bone %d (%d)\n", m_pStudioHdr->name(), bone, m_pStudioHdr->numbones()); } } else { //DevWarning(1, "AutoIKRelease (%s) got a NULL pchain %d\n", m_pStudioHdr->name(), pTarget->chain); } } else { //DevWarning(1, "AutoIKRelease (%s) got an out of range chain %d (%d)\n", m_pStudioHdr->name(), pTarget->chain, m_pStudioHdr->numikchains()); } } else { pTarget->error.bInError = false; } pTarget->error.flErrorTime = m_flTime; } } } void CIKContext_Hydra::SolveDependencies(Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList_Hydra &boneComputed) { // ASSERT_NO_REENTRY(); matrix3x4_t worldTarget; int i, j; ikchainresult_t_Hydra chainResult[32]; // allocate!!! // init chain rules for (i = 0; i < m_pStudioHdr->numikchains(); i++) { mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(i); ikchainresult_t_Hydra *pChainResult = &chainResult[i]; int bone = pchain->pLink(2)->bone; pChainResult->target = -1; pChainResult->flWeight = 0.0; // don't bother with chain if the bone isn't going to be calculated if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask)) continue; // eval current ik'd bone BuildBoneChain(pos, q, bone, boneToWorld, boneComputed); MatrixAngles(boneToWorld[bone], pChainResult->q, pChainResult->pos); } for (j = 0; j < m_ikChainRule.Count(); j++) { for (i = 0; i < m_ikChainRule.Element(j).Count(); i++) { ikcontextikrule_t_Hydra *pRule = &m_ikChainRule.Element(j).Element(i); ikchainresult_t_Hydra *pChainResult = &chainResult[pRule->chain]; pChainResult->target = -1; switch (pRule->type) { case IK_SELF: { // xform IK target error into world space matrix3x4_t local; QuaternionMatrix(pRule->q, pRule->pos, local); // eval target bone space if (pRule->bone != -1) { BuildBoneChain(pos, q, pRule->bone, boneToWorld, boneComputed); ConcatTransforms(boneToWorld[pRule->bone], local, worldTarget); } else { ConcatTransforms(m_rootxform, local, worldTarget); } float flWeight = pRule->flWeight * pRule->flRuleWeight; pChainResult->flWeight = pChainResult->flWeight * (1 - flWeight) + flWeight; Vector p2; Quaternion q2; // target p and q MatrixAngles(worldTarget, q2, p2); // debugLine( pChainResult->pos, p2, 0, 0, 255, true, 0.1 ); // blend in position and angles pChainResult->pos = pChainResult->pos * (1.0 - flWeight) + p2 * flWeight; QuaternionSlerp(pChainResult->q, q2, flWeight, pChainResult->q); } break; case IK_WORLD: Assert(0); break; case IK_ATTACHMENT: break; case IK_GROUND: break; case IK_RELEASE: { // move target back towards original location float flWeight = pRule->flWeight * pRule->flRuleWeight; mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(pRule->chain); int bone = pchain->pLink(2)->bone; Vector p2; Quaternion q2; BuildBoneChain(pos, q, bone, boneToWorld, boneComputed); MatrixAngles(boneToWorld[bone], q2, p2); // blend in position and angles pChainResult->pos = pChainResult->pos * (1.0 - flWeight) + p2 * flWeight; QuaternionSlerp(pChainResult->q, q2, flWeight, pChainResult->q); } break; case IK_UNLATCH: { /* pChainResult->flWeight = pChainResult->flWeight * (1 - pRule->flWeight) + pRule->flWeight; pChainResult->pos = pChainResult->pos * (1.0 - pRule->flWeight ) + pChainResult->local.pos * pRule->flWeight; QuaternionSlerp( pChainResult->q, pChainResult->local.q, pRule->flWeight, pChainResult->q ); */ } break; } } } for (i = 0; i < m_target.Count(); i++) { CIKTarget_Hydra *pTarget = &m_target[i]; if (m_target[i].est.flWeight > 0.0) { matrix3x4_t worldFootpad; matrix3x4_t local; //mstudioikchain_t *pchain = m_pStudioHdr->pIKChain( m_target[i].chain ); ikchainresult_t_Hydra *pChainResult = &chainResult[pTarget->chain]; AngleMatrix(pTarget->offset.q, pTarget->offset.pos, local); AngleMatrix(pTarget->est.q, pTarget->est.pos, worldFootpad); ConcatTransforms(worldFootpad, local, worldTarget); Vector p2; Quaternion q2; // target p and q MatrixAngles(worldTarget, q2, p2); // MatrixAngles( worldTarget, pChainResult->q, pChainResult->pos ); // blend in position and angles pChainResult->flWeight = pTarget->est.flWeight; pChainResult->pos = pChainResult->pos * (1.0 - pChainResult->flWeight) + p2 * pChainResult->flWeight; QuaternionSlerp(pChainResult->q, q2, pChainResult->flWeight, pChainResult->q); } if (pTarget->latched.bNeedsLatch) { // keep track of latch position pTarget->latched.bHasLatch = true; pTarget->latched.q = pTarget->est.q; pTarget->latched.pos = pTarget->est.pos; } } for (i = 0; i < m_pStudioHdr->numikchains(); i++) { ikchainresult_t_Hydra *pChainResult = &chainResult[i]; mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(i); if (pChainResult->flWeight > 0.0) { Vector tmp; MatrixPosition(boneToWorld[pchain->pLink(2)->bone], tmp); // debugLine( pChainResult->pos, tmp, 255, 255, 255, true, 0.1 ); // do exact IK solution // FIXME: once per link! if (Studio_SolveIK_Hydra(pchain, pChainResult->pos, boneToWorld)) { Vector p3; MatrixGetColumn(boneToWorld[pchain->pLink(2)->bone], 3, p3); QuaternionMatrix(pChainResult->q, p3, boneToWorld[pchain->pLink(2)->bone]); // rebuild chain // FIXME: is this needed if everyone past this uses the boneToWorld array? SolveBone_Hydra(m_pStudioHdr, pchain->pLink(2)->bone, boneToWorld, pos, q); SolveBone_Hydra(m_pStudioHdr, pchain->pLink(1)->bone, boneToWorld, pos, q); SolveBone_Hydra(m_pStudioHdr, pchain->pLink(0)->bone, boneToWorld, pos, q); } else { // FIXME: need to invalidate the targets that forced this... if (pChainResult->target != -1) { CIKTarget_Hydra *pTarget = &m_target[pChainResult->target]; VectorScale(pTarget->latched.deltaPos, 0.8, pTarget->latched.deltaPos); QuaternionScale(pTarget->latched.deltaQ, 0.8, pTarget->latched.deltaQ); } } } } #if 0 Vector p1, p2, p3; Quaternion q1, q2, q3; // current p and q MatrixAngles(boneToWorld[bone], q1, p1); // target p and q MatrixAngles(worldTarget, q2, p2); // blend in position and angles p3 = p1 * (1.0 - m_ikRule[i].flWeight) + p2 * m_ikRule[i].flWeight; // do exact IK solution // FIXME: once per link! Studio_SolveIK_Hydra(pchain, p3, boneToWorld); // force angle (bad?) QuaternionSlerp(q1, q2, m_ikRule[i].flWeight, q3); MatrixGetColumn(boneToWorld[bone], 3, p3); QuaternionMatrix(q3, p3, boneToWorld[bone]); // rebuild chain SolveBone_Hydra(m_pStudioHdr, pchain->pLink(2)->bone, boneToWorld, pos, q); SolveBone_Hydra(m_pStudioHdr, pchain->pLink(1)->bone, boneToWorld, pos, q); SolveBone_Hydra(m_pStudioHdr, pchain->pLink(0)->bone, boneToWorld, pos, q); #endif } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext_Hydra::SolveAutoplayLocks( Vector pos[], Quaternion q[] ) { matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList_Hydra boneComputed; int i; for (i = 0; i < m_ikLock.Count(); i++) { const mstudioiklock_t &lock = ((CStudioHdr *)m_pStudioHdr)->pIKAutoplayLock(i); SolveLock(&lock, i, pos, q, boneToWorld, boneComputed); } g_MatrixPool.Free(boneToWorld); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext_Hydra::SolveSequenceLocks( mstudioseqdesc_t &seqdesc, Vector pos[], Quaternion q[] ) { matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList_Hydra boneComputed; int i; for (i = 0; i < m_ikLock.Count(); i++) { mstudioiklock_t *plock = seqdesc.pIKLock(i); SolveLock(plock, i, pos, q, boneToWorld, boneComputed); } g_MatrixPool.Free(boneToWorld); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext_Hydra::AddAllLocks(Vector pos[], Quaternion q[]) { // skip all array access if no autoplay locks. if (m_pStudioHdr->GetNumIKChains() == 0) { return; } matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList_Hydra boneComputed; int ikOffset = m_ikLock.AddMultipleToTail(m_pStudioHdr->GetNumIKChains()); memset(&m_ikLock[ikOffset], 0, sizeof(ikcontextikrule_t_Hydra)*m_pStudioHdr->GetNumIKChains()); for (int i = 0; i < m_pStudioHdr->GetNumIKChains(); i++) { mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(i); int bone = pchain->pLink(2)->bone; // don't bother with iklock if the bone isn't going to be calculated if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask)) continue; // eval current ik'd bone BuildBoneChain(pos, q, bone, boneToWorld, boneComputed); ikcontextikrule_t_Hydra &ikrule = m_ikLock[i + ikOffset]; ikrule.chain = i; ikrule.slot = i; ikrule.type = IK_WORLD; MatrixAngles(boneToWorld[bone], ikrule.q, ikrule.pos); // save off current knee direction if (pchain->pLink(0)->kneeDir.LengthSqr() > 0.0) { Vector tmp = pchain->pLink(0)->kneeDir; VectorRotate(pchain->pLink(0)->kneeDir, boneToWorld[pchain->pLink(0)->bone], ikrule.kneeDir); MatrixPosition(boneToWorld[pchain->pLink(1)->bone], ikrule.kneePos); } else { ikrule.kneeDir.Init(); } } g_MatrixPool.Free(boneToWorld); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext_Hydra::SolveAllLocks( Vector pos[], Quaternion q[] ) { matrix3x4_t *boneToWorld = g_MatrixPool.Alloc(); CBoneBitList_Hydra boneComputed; int i; mstudioiklock_t lock; for (i = 0; i < m_ikLock.Count(); i++) { lock.chain = i; lock.flPosWeight = 1.0; lock.flLocalQWeight = 0.0; lock.flags = 0; SolveLock(&lock, i, pos, q, boneToWorld, boneComputed); } g_MatrixPool.Free(boneToWorld); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void CIKContext_Hydra::SolveLock( const mstudioiklock_t *plock, int i, Vector pos[], Quaternion q[], matrix3x4_t boneToWorld[], CBoneBitList_Hydra &boneComputed ) { mstudioikchain_t *pchain = m_pStudioHdr->pIKChain(plock->chain); int bone = pchain->pLink(2)->bone; // don't bother with iklock if the bone isn't going to be calculated if (!(m_pStudioHdr->boneFlags(bone) & m_boneMask)) return; // eval current ik'd bone BuildBoneChain(pos, q, bone, boneToWorld, boneComputed); Vector p1, p2, p3; Quaternion q2, q3; // current p and q MatrixPosition(boneToWorld[bone], p1); // blend in position p3 = p1 * (1.0 - plock->flPosWeight) + m_ikLock[i].pos * plock->flPosWeight; // do exact IK solution if (m_ikLock[i].kneeDir.LengthSqr() > 0) { Studio_SolveIK_Hydra(pchain->pLink(0)->bone, pchain->pLink(1)->bone, pchain->pLink(2)->bone, p3, m_ikLock[i].kneePos, m_ikLock[i].kneeDir, boneToWorld); } else { Studio_SolveIK_Hydra(pchain, p3, boneToWorld); } // slam orientation MatrixPosition(boneToWorld[bone], p3); QuaternionMatrix(m_ikLock[i].q, p3, boneToWorld[bone]); // rebuild chain q2 = q[bone]; SolveBone_Hydra(m_pStudioHdr, pchain->pLink(2)->bone, boneToWorld, pos, q); QuaternionSlerp(q[bone], q2, plock->flLocalQWeight, q[bone]); SolveBone_Hydra(m_pStudioHdr, pchain->pLink(1)->bone, boneToWorld, pos, q); SolveBone_Hydra(m_pStudioHdr, pchain->pLink(0)->bone, boneToWorld, pos, q); } //----------------------------------------------------------------------------- // Purpose: run all animations that automatically play and are driven off of poseParameters //----------------------------------------------------------------------------- void CalcAutoplaySequences_Hydra( const CStudioHdr *pStudioHdr, CIKContext_Hydra *pIKContext, Vector pos[], Quaternion q[], const float poseParameters[], int boneMask, float realTime ) { // ASSERT_NO_REENTRY(); int i; if (pIKContext) { pIKContext->AddAutoplayLocks(pos, q); } unsigned short *pList = NULL; int count = pStudioHdr->GetAutoplayList(&pList); for (i = 0; i < count; i++) { int sequenceIndex = pList[i]; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(sequenceIndex); if (seqdesc.flags & STUDIO_AUTOPLAY) { float cycle = 0; float cps = Studio_CPS_Hydra(pStudioHdr, seqdesc, sequenceIndex, poseParameters); cycle = realTime * cps; cycle = cycle - (int)cycle; AccumulatePose(pStudioHdr, NULL, pos, q, sequenceIndex, cycle, poseParameters, boneMask, 1.0, realTime); } } if (pIKContext) { pIKContext->SolveAutoplayLocks(pos, q); } } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- void Studio_BuildMatrices_Hydra( const CStudioHdr *pStudioHdr, const QAngle& angles, const Vector& origin, const Vector pos[], const Quaternion q[], int iBone, matrix3x4_t bonetoworld[MAXSTUDIOBONES], int boneMask ) { int i, j; int chain[MAXSTUDIOBONES]; int chainlength = 0; if (iBone < -1 || iBone >= pStudioHdr->numbones()) iBone = 0; // build list of what bones to use if (iBone == -1) { // all bones chainlength = pStudioHdr->numbones(); for (i = 0; i < pStudioHdr->numbones(); i++) { chain[chainlength - i - 1] = i; } } else { // only the parent bones i = iBone; while (i != -1) { chain[chainlength++] = i; i = pStudioHdr->boneParent(i); } } matrix3x4_t bonematrix; matrix3x4_t rotationmatrix; // model to world transformation AngleMatrix(angles, origin, rotationmatrix); for (j = chainlength - 1; j >= 0; j--) { i = chain[j]; if (pStudioHdr->boneFlags(i) & boneMask) { QuaternionMatrix(q[i], pos[i], bonematrix); if (pStudioHdr->boneParent(i) == -1) { ConcatTransforms(rotationmatrix, bonematrix, bonetoworld[i]); } else { ConcatTransforms(bonetoworld[pStudioHdr->boneParent(i)], bonematrix, bonetoworld[i]); } } } } //----------------------------------------------------------------------------- // Purpose: look at single column vector of another bones local transformation // and generate a procedural transformation based on how that column // points down the 6 cardinal axis (all negative weights are clamped to 0). //----------------------------------------------------------------------------- void DoAxisInterpBone_Hydra( mstudiobone_t *pbones, int ibone, CBoneAccessor &bonetoworld ) { matrix3x4_t bonematrix; Vector control; mstudioaxisinterpbone_t *pProc = (mstudioaxisinterpbone_t *)pbones[ibone].pProcedure(); const matrix3x4_t &controlBone = bonetoworld.GetBone(pProc->control); if (pProc && pbones[pProc->control].parent != -1) { Vector tmp; // pull out the control column tmp.x = controlBone[0][pProc->axis]; tmp.y = controlBone[1][pProc->axis]; tmp.z = controlBone[2][pProc->axis]; // invert it back into parent's space. VectorIRotate(tmp, bonetoworld.GetBone(pbones[pProc->control].parent), control); #if 0 matrix3x4_t tmpmatrix; matrix3x4_t controlmatrix; MatrixInvert(bonetoworld.GetBone(pbones[pProc->control].parent), tmpmatrix); ConcatTransforms(tmpmatrix, bonetoworld.GetBone(pProc->control), controlmatrix); // pull out the control column control.x = controlmatrix[0][pProc->axis]; control.y = controlmatrix[1][pProc->axis]; control.z = controlmatrix[2][pProc->axis]; #endif } else { // pull out the control column control.x = controlBone[0][pProc->axis]; control.y = controlBone[1][pProc->axis]; control.z = controlBone[2][pProc->axis]; } Quaternion *q1, *q2, *q3; Vector *p1, *p2, *p3; // find axial control inputs float a1 = control.x; float a2 = control.y; float a3 = control.z; if (a1 >= 0) { q1 = &pProc->quat[0]; p1 = &pProc->pos[0]; } else { a1 = -a1; q1 = &pProc->quat[1]; p1 = &pProc->pos[1]; } if (a2 >= 0) { q2 = &pProc->quat[2]; p2 = &pProc->pos[2]; } else { a2 = -a2; q2 = &pProc->quat[3]; p2 = &pProc->pos[3]; } if (a3 >= 0) { q3 = &pProc->quat[4]; p3 = &pProc->pos[4]; } else { a3 = -a3; q3 = &pProc->quat[5]; p3 = &pProc->pos[5]; } // do a three-way blend Vector p; Quaternion v, tmp; if (a1 + a2 > 0) { float t = 1.0 / (a1 + a2 + a3); // FIXME: do a proper 3-way Quat blend! QuaternionSlerp(*q2, *q1, a1 / (a1 + a2), tmp); QuaternionSlerp(tmp, *q3, a3 * t, v); VectorScale(*p1, a1 * t, p); VectorMA(p, a2 * t, *p2, p); VectorMA(p, a3 * t, *p3, p); } else { QuaternionSlerp(*q3, *q3, 0, v); // ??? no quat copy? p = *p3; } QuaternionMatrix(v, p, bonematrix); ConcatTransforms(bonetoworld.GetBone(pbones[ibone].parent), bonematrix, bonetoworld.GetBoneForWrite(ibone)); } //----------------------------------------------------------------------------- // Purpose: Generate a procedural transformation based on how that another bones // local transformation matches a set of target orientations. //----------------------------------------------------------------------------- void DoQuatInterpBone_Hydra( mstudiobone_t *pbones, int ibone, CBoneAccessor &bonetoworld ) { matrix3x4_t bonematrix; Vector control; mstudioquatinterpbone_t *pProc = (mstudioquatinterpbone_t *)pbones[ibone].pProcedure(); if (pProc && pbones[pProc->control].parent != -1) { Quaternion src; float weight[32]; float scale = 0.0; Quaternion quat; Vector pos; matrix3x4_t tmpmatrix; matrix3x4_t controlmatrix; MatrixInvert(bonetoworld.GetBone(pbones[pProc->control].parent), tmpmatrix); ConcatTransforms(tmpmatrix, bonetoworld.GetBone(pProc->control), controlmatrix); MatrixAngles(controlmatrix, src, pos); // FIXME: make a version without pos int i; for (i = 0; i < pProc->numtriggers; i++) { float dot = fabs(QuaternionDotProduct(pProc->pTrigger(i)->trigger, src)); // FIXME: a fast acos should be acceptable dot = clamp(dot, -1, 1); weight[i] = 1 - (2 * acos(dot) * pProc->pTrigger(i)->inv_tolerance); weight[i] = max(0, weight[i]); scale += weight[i]; } if (scale <= 0.001) // EPSILON? { AngleMatrix(pProc->pTrigger(0)->quat, pProc->pTrigger(0)->pos, bonematrix); ConcatTransforms(bonetoworld.GetBone(pbones[ibone].parent), bonematrix, bonetoworld.GetBoneForWrite(ibone)); return; } scale = 1.0 / scale; quat.Init(0, 0, 0, 0); pos.Init(); for (i = 0; i < pProc->numtriggers; i++) { if (weight[i]) { float s = weight[i] * scale; mstudioquatinterpinfo_t *pTrigger = pProc->pTrigger(i); QuaternionAlign(pTrigger->quat, quat, quat); quat.x = quat.x + s * pTrigger->quat.x; quat.y = quat.y + s * pTrigger->quat.y; quat.z = quat.z + s * pTrigger->quat.z; quat.w = quat.w + s * pTrigger->quat.w; pos.x = pos.x + s * pTrigger->pos.x; pos.y = pos.y + s * pTrigger->pos.y; pos.z = pos.z + s * pTrigger->pos.z; } } Assert(QuaternionNormalize(quat) != 0); QuaternionMatrix(quat, pos, bonematrix); } ConcatTransforms(bonetoworld.GetBone(pbones[ibone].parent), bonematrix, bonetoworld.GetBoneForWrite(ibone)); } /* * This is for DoAimAtBone_Hydra below, was just for testing, not needed in general * but to turn it back on, uncomment this and the section in DoAimAtBone_Hydra() below * static ConVar aim_constraint( "aim_constraint", "1", FCVAR_REPLICATED, "Toggle Helper Bones" ); */ //----------------------------------------------------------------------------- // Purpose: Generate a procedural transformation so that one bone points at // another point on the model //----------------------------------------------------------------------------- void DoAimAtBone_Hydra( mstudiobone_t *pBones, int iBone, CBoneAccessor &bonetoworld, const CStudioHdr *pStudioHdr ) { mstudioaimatbone_t *pProc = (mstudioaimatbone_t *)pBones[iBone].pProcedure(); if (!pProc) { return; } /* * Uncomment this if the ConVar above is uncommented * if ( !aim_constraint.GetBool() ) { // If the aim constraint is turned off then just copy the parent transform // plus the offset value matrix3x4_t boneToWorldSpace; MatrixCopy ( bonetoworld.GetBone( pProc->parent ), boneToWorldSpace ); Vector boneWorldPosition; VectorTransform( pProc->basepos, boneToWorldSpace, boneWorldPosition ); MatrixSetColumn( boneWorldPosition, 3, boneToWorldSpace ); MatrixCopy( boneToWorldSpace, bonetoworld.GetBoneForWrite( iBone ) ); return; } */ // The world matrix of the bone to change matrix3x4_t boneMatrix; // Guaranteed to be unit length const Vector &userAimVector(pProc->aimvector); // Guaranteed to be unit length const Vector &userUpVector(pProc->upvector); // Get to get position of bone but also for up reference matrix3x4_t parentSpace; MatrixCopy(bonetoworld.GetBone(pProc->parent), parentSpace); // World space position of the bone to aim Vector aimWorldPosition; VectorTransform(pProc->basepos, parentSpace, aimWorldPosition); // The worldspace matrix of the bone to aim at matrix3x4_t aimAtSpace; if (pStudioHdr) { // This means it's AIMATATTACH const mstudioattachment_t &attachment(((CStudioHdr *)pStudioHdr)->pAttachment(pProc->aim)); ConcatTransforms( bonetoworld.GetBone(attachment.localbone), attachment.local, aimAtSpace); } else { MatrixCopy(bonetoworld.GetBone(pProc->aim), aimAtSpace); } Vector aimAtWorldPosition; MatrixGetColumn(aimAtSpace, 3, aimAtWorldPosition); // make sure the redundant parent info is correct Assert(pProc->parent == pBones[iBone].parent); // make sure the redundant position info is correct Assert(pProc->basepos.DistToSqr(pBones[iBone].pos) < 0.1); // The aim and up data is relative to this bone, not the parent bone matrix3x4_t bonematrix, boneLocalToWorld; AngleMatrix(pBones[iBone].quat, pProc->basepos, bonematrix); ConcatTransforms(bonetoworld.GetBone(pProc->parent), bonematrix, boneLocalToWorld); Vector aimVector; VectorSubtract(aimAtWorldPosition, aimWorldPosition, aimVector); VectorNormalizeFast(aimVector); Vector axis; CrossProduct(userAimVector, aimVector, axis); VectorNormalizeFast(axis); Assert(1.0f - fabs(DotProduct(userAimVector, aimVector)) > FLT_EPSILON); float angle(acosf(DotProduct(userAimVector, aimVector))); Quaternion aimRotation; AxisAngleQuaternion(axis, RAD2DEG(angle), aimRotation); if ((1.0f - fabs(DotProduct(userUpVector, userAimVector))) > FLT_EPSILON) { matrix3x4_t aimRotationMatrix; QuaternionMatrix(aimRotation, aimRotationMatrix); Vector tmpV; Vector tmp_pUp; VectorRotate(userUpVector, aimRotationMatrix, tmp_pUp); VectorScale(aimVector, DotProduct(aimVector, tmp_pUp), tmpV); Vector pUp; VectorSubtract(tmp_pUp, tmpV, pUp); VectorNormalizeFast(pUp); Vector tmp_pParentUp; VectorRotate(userUpVector, boneLocalToWorld, tmp_pParentUp); VectorScale(aimVector, DotProduct(aimVector, tmp_pParentUp), tmpV); Vector pParentUp; VectorSubtract(tmp_pParentUp, tmpV, pParentUp); VectorNormalizeFast(pParentUp); Quaternion upRotation; //Assert( 1.0f - fabs( DotProduct( pUp, pParentUp ) ) > FLT_EPSILON ); if (1.0f - fabs(DotProduct(pUp, pParentUp)) > FLT_EPSILON) { angle = acos(DotProduct(pUp, pParentUp)); CrossProduct(pUp, pParentUp, axis); } else { angle = 0; axis = pUp; } VectorNormalizeFast(axis); AxisAngleQuaternion(axis, RAD2DEG(angle), upRotation); Quaternion boneRotation; QuaternionMult(upRotation, aimRotation, boneRotation); QuaternionMatrix(boneRotation, aimWorldPosition, boneMatrix); } else { QuaternionMatrix(aimRotation, aimWorldPosition, boneMatrix); } MatrixCopy(boneMatrix, bonetoworld.GetBoneForWrite(iBone)); } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool CalcProceduralBone_Hydra( const CStudioHdr *pStudioHdr, int iBone, CBoneAccessor &bonetoworld ) { mstudiobone_t *pbones = pStudioHdr->pBone(0); if (pStudioHdr->boneFlags(iBone) & BONE_ALWAYS_PROCEDURAL) { switch (pbones[iBone].proctype) { case STUDIO_PROC_AXISINTERP: DoAxisInterpBone_Hydra(pbones, iBone, bonetoworld); return true; case STUDIO_PROC_QUATINTERP: DoQuatInterpBone_Hydra(pbones, iBone, bonetoworld); return true; case STUDIO_PROC_AIMATBONE: DoAimAtBone_Hydra(pbones, iBone, bonetoworld, NULL); return true; case STUDIO_PROC_AIMATATTACH: DoAimAtBone_Hydra(pbones, iBone, bonetoworld, pStudioHdr); return true; default: return false; } } return false; } //----------------------------------------------------------------------------- // Purpose: Lookup a bone controller //----------------------------------------------------------------------------- static mstudiobonecontroller_t* FindController(const CStudioHdr *pStudioHdr, int iController) { // find first controller that matches the index for (int i = 0; i < pStudioHdr->numbonecontrollers(); i++) { if (pStudioHdr->pBonecontroller(i)->inputfield == iController) return pStudioHdr->pBonecontroller(i); } return NULL; } //----------------------------------------------------------------------------- // Purpose: converts a ranged bone controller value into a 0..1 encoded value // Output: ctlValue contains 0..1 encoding. // returns clamped ranged value //----------------------------------------------------------------------------- float Studio_SetController_Hydra(const CStudioHdr *pStudioHdr, int iController, float flValue, float &ctlValue) { if (!pStudioHdr) return flValue; mstudiobonecontroller_t *pbonecontroller = FindController(pStudioHdr, iController); if (!pbonecontroller) { ctlValue = 0; return flValue; } // wrap 0..360 if it's a rotational controller if (pbonecontroller->type & (STUDIO_XR | STUDIO_YR | STUDIO_ZR)) { // ugly hack, invert value if end < start if (pbonecontroller->end < pbonecontroller->start) flValue = -flValue; // does the controller not wrap? if (pbonecontroller->start + 359.0 >= pbonecontroller->end) { if (flValue >((pbonecontroller->start + pbonecontroller->end) / 2.0) + 180) flValue = flValue - 360; if (flValue < ((pbonecontroller->start + pbonecontroller->end) / 2.0) - 180) flValue = flValue + 360; } else { if (flValue > 360) flValue = flValue - (int)(flValue / 360.0) * 360.0; else if (flValue < 0) flValue = flValue + (int)((flValue / -360.0) + 1) * 360.0; } } ctlValue = (flValue - pbonecontroller->start) / (pbonecontroller->end - pbonecontroller->start); if (ctlValue < 0) ctlValue = 0; if (ctlValue > 1) ctlValue = 1; float flReturnVal = ((1.0 - ctlValue)*pbonecontroller->start + ctlValue *pbonecontroller->end); // ugly hack, invert value if a rotational controller and end < start if (pbonecontroller->type & (STUDIO_XR | STUDIO_YR | STUDIO_ZR) && pbonecontroller->end < pbonecontroller->start) { flReturnVal *= -1; } return flReturnVal; } //----------------------------------------------------------------------------- // Purpose: converts a 0..1 encoded bone controller value into a ranged value // Output: returns ranged value //----------------------------------------------------------------------------- float Studio_GetController_Hydra(const CStudioHdr *pStudioHdr, int iController, float ctlValue) { if (!pStudioHdr) return 0.0; mstudiobonecontroller_t *pbonecontroller = FindController(pStudioHdr, iController); if (!pbonecontroller) return 0; return ctlValue * (pbonecontroller->end - pbonecontroller->start) + pbonecontroller->start; } //----------------------------------------------------------------------------- // Purpose: converts a ranged pose parameter value into a 0..1 encoded value // Output: ctlValue contains 0..1 encoding. // returns clamped ranged value //----------------------------------------------------------------------------- float Studio_SetPoseParameter_Hydra(const CStudioHdr *pStudioHdr, int iParameter, float flValue, float &ctlValue) { if (iParameter < 0 || iParameter >= pStudioHdr->GetNumPoseParameters()) { return 0; } const mstudioposeparamdesc_t &PoseParam = ((CStudioHdr *)pStudioHdr)->pPoseParameter(iParameter); Assert(IsFinite(flValue)); if (PoseParam.loop) { float wrap = (PoseParam.start + PoseParam.end) / 2.0 + PoseParam.loop / 2.0; float shift = PoseParam.loop - wrap; flValue = flValue - PoseParam.loop * floor((flValue + shift) / PoseParam.loop); } ctlValue = (flValue - PoseParam.start) / (PoseParam.end - PoseParam.start); if (ctlValue < 0) ctlValue = 0; if (ctlValue > 1) ctlValue = 1; Assert(IsFinite(ctlValue)); return ctlValue * (PoseParam.end - PoseParam.start) + PoseParam.start; } //----------------------------------------------------------------------------- // Purpose: converts a 0..1 encoded pose parameter value into a ranged value // Output: returns ranged value //----------------------------------------------------------------------------- float Studio_GetPoseParameter_Hydra(const CStudioHdr *pStudioHdr, int iParameter, float ctlValue) { if (iParameter < 0 || iParameter >= pStudioHdr->GetNumPoseParameters()) { return 0; } const mstudioposeparamdesc_t &PoseParam = ((CStudioHdr *)pStudioHdr)->pPoseParameter(iParameter); return ctlValue * (PoseParam.end - PoseParam.start) + PoseParam.start; } #pragma warning (disable : 4701) //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- static int ClipRayToHitbox(const Ray_t &ray, mstudiobbox_t *pbox, matrix3x4_t& matrix, trace_t &tr) { // scale by current t so hits shorten the ray and increase the likelihood of early outs Vector delta2; VectorScale(ray.m_Delta, (0.5f * tr.fraction), delta2); // OPTIMIZE: Store this in the box instead of computing it here // compute center in local space Vector boxextents; boxextents.x = (pbox->bbmin.x + pbox->bbmax.x) * 0.5; boxextents.y = (pbox->bbmin.y + pbox->bbmax.y) * 0.5; boxextents.z = (pbox->bbmin.z + pbox->bbmax.z) * 0.5; Vector boxCenter; // transform to world space VectorTransform(boxextents, matrix, boxCenter); // calc extents from local center boxextents.x = pbox->bbmax.x - boxextents.x; boxextents.y = pbox->bbmax.y - boxextents.y; boxextents.z = pbox->bbmax.z - boxextents.z; // OPTIMIZE: This is optimized for world space. If the transform is fast enough, it may make more // sense to just xform and call UTIL_ClipToBox() instead. MEASURE THIS. // save the extents of the ray along Vector extent, uextent; Vector segmentCenter; segmentCenter.x = ray.m_Start.x + delta2.x - boxCenter.x; segmentCenter.y = ray.m_Start.y + delta2.y - boxCenter.y; segmentCenter.z = ray.m_Start.z + delta2.z - boxCenter.z; extent.Init(); // check box axes for separation for (int j = 0; j < 3; j++) { extent[j] = delta2.x * matrix[0][j] + delta2.y * matrix[1][j] + delta2.z * matrix[2][j]; uextent[j] = fabsf(extent[j]); float coord = segmentCenter.x * matrix[0][j] + segmentCenter.y * matrix[1][j] + segmentCenter.z * matrix[2][j]; coord = fabsf(coord); if (coord >(boxextents[j] + uextent[j])) return -1; } // now check cross axes for separation float tmp, cextent; Vector cross; CrossProduct(delta2, segmentCenter, cross); cextent = cross.x * matrix[0][0] + cross.y * matrix[1][0] + cross.z * matrix[2][0]; cextent = fabsf(cextent); tmp = boxextents[1] * uextent[2] + boxextents[2] * uextent[1]; if (cextent > tmp) return -1; cextent = cross.x * matrix[0][1] + cross.y * matrix[1][1] + cross.z * matrix[2][1]; cextent = fabsf(cextent); tmp = boxextents[0] * uextent[2] + boxextents[2] * uextent[0]; if (cextent > tmp) return -1; cextent = cross.x * matrix[0][2] + cross.y * matrix[1][2] + cross.z * matrix[2][2]; cextent = fabsf(cextent); tmp = boxextents[0] * uextent[1] + boxextents[1] * uextent[0]; if (cextent > tmp) return -1; // !!! We hit this box !!! compute intersection point and return Vector start; // Compute ray start in bone space VectorITransform(ray.m_Start, matrix, start); // extent is delta2 in bone space, recompute delta in bone space VectorScale(extent, 2, extent); // delta was prescaled by the current t, so no need to see if this intersection // is closer trace_t boxTrace; if (!IntersectRayWithBox(start, extent, pbox->bbmin, pbox->bbmax, 0.0f, &boxTrace)) return -1; Assert(IsFinite(boxTrace.fraction)); tr.fraction *= boxTrace.fraction; tr.startsolid = boxTrace.startsolid; int hitside = boxTrace.plane.type; if (boxTrace.plane.normal[hitside] >= 0) { hitside += 3; } return hitside; } #pragma warning (default : 4701) //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool SweepBoxToStudio_Hydra(IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set, matrix3x4_t **hitboxbones, int fContentsMask, trace_t &tr) { tr.fraction = 1.0; tr.startsolid = false; // OPTIMIZE: Partition these? Ray_t clippedRay = ray; int hitbox = -1; for (int i = 0; i < set->numhitboxes; i++) { mstudiobbox_t *pbox = set->pHitbox(i); // Filter based on contents mask int fBoneContents = pStudioHdr->pBone(pbox->bone)->contents; if ((fBoneContents & fContentsMask) == 0) continue; trace_t obbTrace; if (IntersectRayWithOBB(clippedRay, *hitboxbones[pbox->bone], pbox->bbmin, pbox->bbmax, 0.0f, &obbTrace)) { tr.startpos = obbTrace.startpos; tr.endpos = obbTrace.endpos; tr.plane = obbTrace.plane; tr.startsolid = obbTrace.startsolid; tr.allsolid = obbTrace.allsolid; // This logic here is to shorten the ray each time to get more early outs tr.fraction *= obbTrace.fraction; clippedRay.m_Delta *= obbTrace.fraction; hitbox = i; if (tr.startsolid) break; } } if (hitbox >= 0) { tr.hitgroup = set->pHitbox(hitbox)->group; tr.hitbox = hitbox; const mstudiobone_t *pBone = pStudioHdr->pBone(set->pHitbox(hitbox)->bone); tr.contents = pBone->contents | CONTENTS_HITBOX; tr.physicsbone = pBone->physicsbone; tr.surface.name = "**studio**"; tr.surface.flags = SURF_HITBOX; tr.surface.surfaceProps = pProps->GetSurfaceIndex(pBone->pszSurfaceProp()); Assert(tr.physicsbone >= 0); return true; } return false; } //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- bool TraceToStudio_Hydra(IPhysicsSurfaceProps *pProps, const Ray_t& ray, CStudioHdr *pStudioHdr, mstudiohitboxset_t *set, matrix3x4_t **hitboxbones, int fContentsMask, trace_t &tr) { if (!ray.m_IsRay) { return SweepBoxToStudio_Hydra(pProps, ray, pStudioHdr, set, hitboxbones, fContentsMask, tr); } tr.fraction = 1.0; tr.startsolid = false; // no hit yet int hitbox = -1; int hitside = -1; // OPTIMIZE: Partition these? for (int i = 0; i < set->numhitboxes; i++) { mstudiobbox_t *pbox = set->pHitbox(i); // Filter based on contents mask int fBoneContents = pStudioHdr->pBone(pbox->bone)->contents; if ((fBoneContents & fContentsMask) == 0) continue; // columns are axes of the bones in world space, translation is in world space matrix3x4_t& matrix = *hitboxbones[pbox->bone]; int side = ClipRayToHitbox(ray, pbox, matrix, tr); if (side >= 0) { hitbox = i; hitside = side; } } if (hitbox >= 0) { mstudiobbox_t *pbox = set->pHitbox(hitbox); VectorMA(ray.m_Start, tr.fraction, ray.m_Delta, tr.endpos); tr.hitgroup = set->pHitbox(hitbox)->group; tr.hitbox = hitbox; const mstudiobone_t *pBone = pStudioHdr->pBone(pbox->bone); tr.contents = pBone->contents | CONTENTS_HITBOX; tr.physicsbone = pBone->physicsbone; tr.surface.name = "**studio**"; tr.surface.flags = SURF_HITBOX; tr.surface.surfaceProps = pProps->GetSurfaceIndex(pBone->pszSurfaceProp()); Assert(tr.physicsbone >= 0); matrix3x4_t& matrix = *hitboxbones[pbox->bone]; if (hitside >= 3) { hitside -= 3; tr.plane.normal[0] = matrix[0][hitside]; tr.plane.normal[1] = matrix[1][hitside]; tr.plane.normal[2] = matrix[2][hitside]; //tr.plane.dist = DotProduct( tr.plane.normal, Vector(matrix[0][3], matrix[1][3], matrix[2][3] ) ) + pbox->bbmax[hitside]; } else { tr.plane.normal[0] = -matrix[0][hitside]; tr.plane.normal[1] = -matrix[1][hitside]; tr.plane.normal[2] = -matrix[2][hitside]; //tr.plane.dist = DotProduct( tr.plane.normal, Vector(matrix[0][3], matrix[1][3], matrix[2][3] ) ) - pbox->bbmin[hitside]; } // simpler plane constant equation tr.plane.dist = DotProduct(tr.endpos, tr.plane.normal); tr.plane.type = 3; return true; } return false; } //----------------------------------------------------------------------------- // Purpose: returns array of animations and weightings for a sequence based on current pose parameters //----------------------------------------------------------------------------- void Studio_SeqAnims_Hydra(const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[], mstudioanimdesc_t *panim[4], float *weight) { #if _DEBUG VPROF_INCREMENT_COUNTER("SEQ_ANIMS", 1); #endif if (!pStudioHdr || iSequence >= pStudioHdr->GetNumSeq()) { weight[0] = weight[1] = weight[2] = weight[3] = 0.0; return; } int i0 = 0, i1 = 0; float s0 = 0, s1 = 0; Studio_LocalPoseParameter_Hydra(pStudioHdr, poseParameter, seqdesc, iSequence, 0, s0, i0); Studio_LocalPoseParameter_Hydra(pStudioHdr, poseParameter, seqdesc, iSequence, 1, s1, i1); panim[0] = &((CStudioHdr *)pStudioHdr)->pAnimdesc(pStudioHdr->iRelativeAnim(iSequence, seqdesc.anim(i0, i1))); weight[0] = (1 - s0) * (1 - s1); panim[1] = &((CStudioHdr *)pStudioHdr)->pAnimdesc(pStudioHdr->iRelativeAnim(iSequence, seqdesc.anim(i0 + 1, i1))); weight[1] = (s0)* (1 - s1); panim[2] = &((CStudioHdr *)pStudioHdr)->pAnimdesc(pStudioHdr->iRelativeAnim(iSequence, seqdesc.anim(i0, i1 + 1))); weight[2] = (1 - s0) * (s1); panim[3] = &((CStudioHdr *)pStudioHdr)->pAnimdesc(pStudioHdr->iRelativeAnim(iSequence, seqdesc.anim(i0 + 1, i1 + 1))); weight[3] = (s0)* (s1); Assert(weight[0] >= 0.0f && weight[1] >= 0.0f && weight[2] >= 0.0f && weight[3] >= 0.0f); } //----------------------------------------------------------------------------- // Purpose: returns max frame number for a sequence //----------------------------------------------------------------------------- int Studio_MaxFrame_Hydra(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[]) { mstudioanimdesc_t *panim[4]; float weight[4]; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence); Studio_SeqAnims_Hydra(pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight); float maxFrame = 0; for (int i = 0; i < 4; i++) { if (weight[i] > 0) { maxFrame += panim[i]->numframes * weight[i]; } } if (maxFrame > 1) maxFrame -= 1; // FIXME: why does the weights sometimes not exactly add it 1.0 and this sometimes rounds down? return (maxFrame + 0.01); } //----------------------------------------------------------------------------- // Purpose: returns frames per second of a sequence //----------------------------------------------------------------------------- float Studio_FPS_Hydra(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[]) { mstudioanimdesc_t *panim[4]; float weight[4]; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence); Studio_SeqAnims_Hydra(pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight); float t = 0; for (int i = 0; i < 4; i++) { if (weight[i] > 0) { t += panim[i]->fps * weight[i]; } } return t; } //----------------------------------------------------------------------------- // Purpose: returns cycles per second of a sequence (cycles/second) //----------------------------------------------------------------------------- float Studio_CPS_Hydra(const CStudioHdr *pStudioHdr, mstudioseqdesc_t &seqdesc, int iSequence, const float poseParameter[]) { mstudioanimdesc_t *panim[4]; float weight[4]; Studio_SeqAnims_Hydra(pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight); float t = 0; for (int i = 0; i < 4; i++) { if (weight[i] > 0 && panim[i]->numframes > 1) { t += (panim[i]->fps / (panim[i]->numframes - 1)) * weight[i]; } } return t; } //----------------------------------------------------------------------------- // Purpose: returns length (in seconds) of a sequence (seconds/cycle) //----------------------------------------------------------------------------- float Studio_Duration_Hydra(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[]) { mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence); float cps = Studio_CPS_Hydra(pStudioHdr, seqdesc, iSequence, poseParameter); if (cps == 0) return 0.0f; return 1.0f / cps; } //----------------------------------------------------------------------------- // Purpose: calculate changes in position and angle relative to the start of an animations cycle // Output: updated position and angle, relative to the origin // returns false if animation is not a movement animation //----------------------------------------------------------------------------- bool Studio_AnimPosition_Hydra(mstudioanimdesc_t *panim, float flCycle, Vector &vecPos, QAngle &vecAngle) { float prevframe = 0; vecPos.Init(); vecAngle.Init(); if (panim->nummovements == 0) return false; int iLoops = 0; if (flCycle > 1.0) { iLoops = (int)flCycle; } else if (flCycle < 0.0) { iLoops = (int)flCycle - 1; } flCycle = flCycle - iLoops; float flFrame = flCycle * (panim->numframes - 1); for (int i = 0; i < panim->nummovements; i++) { mstudiomovement_t *pmove = panim->pMovement(i); if (pmove->endframe >= flFrame) { float f = (flFrame - prevframe) / (pmove->endframe - prevframe); float d = pmove->v0 * f + 0.5 * (pmove->v1 - pmove->v0) * f * f; vecPos = vecPos + d * pmove->vector; vecAngle.y = vecAngle.y * (1 - f) + pmove->angle * f; if (iLoops != 0) { mstudiomovement_t *pmove = panim->pMovement(panim->nummovements - 1); vecPos = vecPos + iLoops * pmove->position; vecAngle.y = vecAngle.y + iLoops * pmove->angle; } return true; } else { prevframe = pmove->endframe; vecPos = pmove->position; vecAngle.y = pmove->angle; } } return false; } //----------------------------------------------------------------------------- // Purpose: calculate instantaneous velocity in ips at a given point // in the animations cycle // Output: velocity vector, relative to identity orientation // returns false if animation is not a movement animation //----------------------------------------------------------------------------- bool Studio_AnimVelocity_Hydra(mstudioanimdesc_t *panim, float flCycle, Vector &vecVelocity) { float prevframe = 0; float flFrame = flCycle * (panim->numframes - 1); flFrame = flFrame - (int)(flFrame / (panim->numframes - 1)); for (int i = 0; i < panim->nummovements; i++) { mstudiomovement_t *pmove = panim->pMovement(i); if (pmove->endframe >= flFrame) { float f = (flFrame - prevframe) / (pmove->endframe - prevframe); float vel = pmove->v0 * (1 - f) + pmove->v1 * f; // scale from per block to per sec velocity vel = vel * panim->fps / (pmove->endframe - prevframe); vecVelocity = pmove->vector * vel; return true; } else { prevframe = pmove->endframe; } } return false; } //----------------------------------------------------------------------------- // Purpose: calculate changes in position and angle between two points in an animation cycle // Output: updated position and angle, relative to CycleFrom being at the origin // returns false if animation is not a movement animation //----------------------------------------------------------------------------- bool Studio_AnimMovement_Hydra(mstudioanimdesc_t *panim, float flCycleFrom, float flCycleTo, Vector &deltaPos, QAngle &deltaAngle) { if (panim->nummovements == 0) return false; Vector startPos; QAngle startA; Studio_AnimPosition_Hydra(panim, flCycleFrom, startPos, startA); Vector endPos; QAngle endA; Studio_AnimPosition_Hydra(panim, flCycleTo, endPos, endA); Vector tmp = endPos - startPos; deltaAngle.y = endA.y - startA.y; VectorYawRotate(tmp, -startA.y, deltaPos); return true; } //----------------------------------------------------------------------------- // Purpose: finds how much of an animation to play to move given linear distance //----------------------------------------------------------------------------- float Studio_FindAnimDistance_Hydra(mstudioanimdesc_t *panim, float flDist) { float prevframe = 0; if (flDist <= 0) return 0.0; for (int i = 0; i < panim->nummovements; i++) { mstudiomovement_t *pmove = panim->pMovement(i); float flMove = (pmove->v0 + pmove->v1) * 0.5; if (flMove >= flDist) { float root1, root2; // d = V0 * t + 1/2 (V1-V0) * t^2 if (SolveQuadratic(0.5 * (pmove->v1 - pmove->v0), pmove->v0, -flDist, root1, root2)) { float cpf = 1.0 / (panim->numframes - 1); // cycles per frame return (prevframe + root1 * (pmove->endframe - prevframe)) * cpf; } return 0.0; } else { flDist -= flMove; prevframe = pmove->endframe; } } return 1.0; } //----------------------------------------------------------------------------- // Purpose: calculate changes in position and angle between two points in a sequences cycle // Output: updated position and angle, relative to CycleFrom being at the origin // returns false if sequence is not a movement sequence //----------------------------------------------------------------------------- bool Studio_SeqMovement_Hydra(const CStudioHdr *pStudioHdr, int iSequence, float flCycleFrom, float flCycleTo, const float poseParameter[], Vector &deltaPos, QAngle &deltaAngles) { mstudioanimdesc_t *panim[4]; float weight[4]; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence); Studio_SeqAnims_Hydra(pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight); deltaPos.Init(); deltaAngles.Init(); bool found = false; for (int i = 0; i < 4; i++) { if (weight[i]) { Vector localPos; QAngle localAngles; localPos.Init(); localAngles.Init(); if (Studio_AnimMovement_Hydra(panim[i], flCycleFrom, flCycleTo, localPos, localAngles)) { found = true; deltaPos = deltaPos + localPos * weight[i]; // FIXME: this makes no sense deltaAngles = deltaAngles + localAngles * weight[i]; } else if (!(panim[i]->flags & STUDIO_DELTA) && panim[i]->nummovements == 0 && seqdesc.weight(0) > 0.0) { found = true; } } } return found; } //----------------------------------------------------------------------------- // Purpose: calculate instantaneous velocity in ips at a given point in the sequence's cycle // Output: velocity vector, relative to identity orientation // returns false if sequence is not a movement sequence //----------------------------------------------------------------------------- bool Studio_SeqVelocity_Hydra(const CStudioHdr *pStudioHdr, int iSequence, float flCycle, const float poseParameter[], Vector &vecVelocity) { mstudioanimdesc_t *panim[4]; float weight[4]; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence); Studio_SeqAnims_Hydra(pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight); vecVelocity.Init(); bool found = false; for (int i = 0; i < 4; i++) { if (weight[i]) { Vector vecLocalVelocity; if (Studio_AnimVelocity_Hydra(panim[i], flCycle, vecLocalVelocity)) { vecVelocity = vecVelocity + vecLocalVelocity * weight[i]; found = true; } } } return found; } //----------------------------------------------------------------------------- // Purpose: finds how much of an sequence to play to move given linear distance //----------------------------------------------------------------------------- float Studio_FindSeqDistance_Hydra(const CStudioHdr *pStudioHdr, int iSequence, const float poseParameter[], float flDist) { mstudioanimdesc_t *panim[4]; float weight[4]; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence); Studio_SeqAnims_Hydra(pStudioHdr, seqdesc, iSequence, poseParameter, panim, weight); float flCycle = 0; for (int i = 0; i < 4; i++) { if (weight[i]) { float flLocalCycle = Studio_FindAnimDistance_Hydra(panim[i], flDist); flCycle = flCycle + flLocalCycle * weight[i]; } } return flCycle; } //----------------------------------------------------------------------------- // Purpose: lookup attachment by name //----------------------------------------------------------------------------- int Studio_FindAttachment_Hydra(const CStudioHdr *pStudioHdr, const char *pAttachmentName) { if (pStudioHdr && pStudioHdr->SequencesAvailable()) { // Extract the bone index from the name for (int i = 0; i < pStudioHdr->GetNumAttachments(); i++) { if (!stricmp(pAttachmentName, ((CStudioHdr *)pStudioHdr)->pAttachment(i).pszName())) { return i; } } } return -1; } //----------------------------------------------------------------------------- // Purpose: lookup attachments by substring. Randomly return one of the matching attachments. //----------------------------------------------------------------------------- int Studio_FindRandomAttachment_Hydra(const CStudioHdr *pStudioHdr, const char *pAttachmentName) { if (pStudioHdr) { // First move them all matching attachments into a list CUtlVector matchingAttachments; // Extract the bone index from the name for (int i = 0; i < pStudioHdr->GetNumAttachments(); i++) { if (strstr(((CStudioHdr *)pStudioHdr)->pAttachment(i).pszName(), pAttachmentName)) { matchingAttachments.AddToTail(i); } } // Then randomly return one of the attachments if (matchingAttachments.Size() > 0) return matchingAttachments[RandomInt(0, matchingAttachments.Size() - 1)]; } return -1; } //----------------------------------------------------------------------------- // Purpose: lookup bone by name //----------------------------------------------------------------------------- int Studio_BoneIndexByName_Hydra(const CStudioHdr *pStudioHdr, const char *pName) { // binary search for the bone matching pName int start = 0, end = pStudioHdr->numbones() - 1; const byte *pBoneTable = pStudioHdr->GetBoneTableSortedByName(); mstudiobone_t *pbones = pStudioHdr->pBone(0); while (start <= end) { int mid = (start + end) >> 1; int cmp = Q_stricmp(pbones[pBoneTable[mid]].pszName(), pName); if (cmp < 0) { start = mid + 1; } else if (cmp > 0) { end = mid - 1; } else { return pBoneTable[mid]; } } return -1; } const char *Studio_GetDefaultSurfaceProps_Hydra(CStudioHdr *pstudiohdr) { return pstudiohdr->pszSurfaceProp(); } float Studio_GetMass_Hydra(CStudioHdr *pstudiohdr) { return pstudiohdr->mass(); } //----------------------------------------------------------------------------- // Purpose: return pointer to sequence key value buffer //----------------------------------------------------------------------------- const char *Studio_GetKeyValueText_Hydra(const CStudioHdr *pStudioHdr, int iSequence) { if (pStudioHdr && pStudioHdr->SequencesAvailable()) { if (iSequence >= 0 && iSequence < pStudioHdr->GetNumSeq()) { return ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence).KeyValueText(); } } return NULL; } bool Studio_PrefetchSequence_Hydra(const CStudioHdr *pStudioHdr, int iSequence) { bool pendingload = false; mstudioseqdesc_t &seqdesc = ((CStudioHdr *)pStudioHdr)->pSeqdesc(iSequence); int size0 = seqdesc.groupsize[0]; int size1 = seqdesc.groupsize[1]; for (int i = 0; i < size0; ++i) { for (int j = 0; j < size1; ++j) { mstudioanimdesc_t &animdesc = ((CStudioHdr *)pStudioHdr)->pAnimdesc(seqdesc.anim(i, j)); int iFrame = 0; mstudioanim_t *panim = animdesc.pAnim(&iFrame); if (!panim) { pendingload = true; } } } // Everything for this sequence is resident? return !pendingload; }